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0. Introduction. Let X be a topological space. The topology on X will
be denoted by G or Tx. If R is an equivalence relation on X, the quotient
set obtained by R we shall denote equivalently by X/z or D={D,|ac 4, 4
some index set}. The quotient topology of X/ will be denoted by J/g or J.
The topology of the subspace 4 of X is denoted by J/,. The set of all
subsets of X is @ (X). Recall that the power topology T, on 2 (X) is defined
in [2] in the following way. Subbase for T, is the family of sets {U, |U& T}
where Uy, ={4|0#ACX and ANU+0}.

The most natural topology on X/ is J/p. Here we introduce another
topology on X/, which is almost as natural as J/g. It is denoted by g,
and called choice topology. The way of introducing of T, is as follows. Let
D={D,|a€ A4}. Consider any mapping ¢:D—X defined so that 9 (Dy) €EDy.
Such a mapping is called a choice function. Let Z denote the family of all
choice functions. G is the coarsest topology on D for which all choice functions
are continuous.

In this note we examine some properties of T, and its connection
with the power topology, obtaining as consequence a theorem of Michael
[3] and Franklin [1] (as the corollary of the theorem 1.3).

1. Some properties

Theorem 1.1. G, is not coarser than J,.

Proof. Consider the mapping p:X—D defined in the following way:
for all x&X p(x) is the element of D to which x belongs. It is clear that
if we have a mapping of a topological space X into the set D and if it is
a continuous mapping with respect to some topology &, on D the same
mapping must be continuous with respect to any other topology on D which
is coarser than J,. To prove that J is not coarser than Ty it is sufficient
to prove that from the continuity of p in the topology U it follows that
J,=J,p. Prove, first, that p is an open mapping. Let O be an open set in X.
First of all p(0)D¢~!(0) (+) for some choice function ¢. To prove it, con-
sider all those members of D which intersect O. Denote that part by Op, Op =
—{4|A€D, and ANO#®}. Consider Op={A'|A'=AN0}. According to the
axiom of choice there exists a choice function ¢ for Op and consequently
also for Op. The (*) is proved.
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From the definition of the topology T, it follows that ¢~1(0) is open.
Suppose that we have GzCJy. Then p is continuous mapping of (X, )
onto (D, Jz) since p is continuous mapping of (X, G) onto (D, Yp). Since
p is open and continuous mapping of (X, ) onto (D, Jz) according to ([2],
theorem 3.8.) G,=0,, as was to be proved. Let us show by an example
that G, could be strictly finer than Jo- Consider the one dimensional Eucli-
dian space R! and take the following partition of R:D,=(n, n+1) and
D,={n}. Using the same method as in proof of (*) we obtain that T, is
discrete. But quotient topology of that set is not discrete since the set {n}
is not open in R!. The proof is complete.

Definition. Decomposition D is I-non-void if for each Dye D there
exists some x€D, and a neighbourhood ¥ (x) of x, with the property

D\V (x)#@ for all B#a.
As for B=qo, it is possible both D,\V#® and D,\V=0.

Theorem 1.2. G, is discrete if and only if the decomposition D is
I-non-void.

Proof. Let the decomposition D be I-non-void. From that hypothesis
and above definition it follows existence of x< D, and V(x). Take the choice
function ¢ which has the following property: ¢ (D) EDg\V (x) for B+«
and 9 (D,)EV (x). We have ¢! (V' (x))=D,. Hence {D,} as singleton is open
in (D, ). As it is possible deduce for all «, the first part of the statement
is proved.

Conversely, suppose that D is not I-non-void. Then for at least one o,
all x&D, and every V(x) there exists at least one B#a with the property
DgC V(x). Then the relation {D,}=¢~1(V (x)) is not possible, whatever would
be ¢ and V(x), because of the fact that @~ (V' (x)) contains always at least
one point more. It means {D,} =T, and T, is not discrete.

Theorem 1.3. Let f be continuous function on X onto ¥, D=D(f)
i. e. Dy=f"1(x), x€ ¥, and let f: DY (f(D,)=f (D)) be continuous and
open, then

10 ggzgz

2° Go=gF~ (X)|(X|R), where TX(X) is the family of all R-saturated
sets in the & and consequently in the &, (that is D= JR,, a & A*C A).

Proof. Prove first that f~1(0) is R-saturated in G for all 0 J,. First
of all f~1(0)€J since f is continuous. Let for some x <D, we have fxeo,
then we have f(x)€O for all x&D, according to the definition of R.

Consider Z€Y,, we have §'=f(§)cT (Y) since f is open. From the
continuity of f it follows that f~1(§)cJ and R-saturated. Set (G =V,

and prove that V' = f~1 (€). f~1(@) = f~1(f (@) = [ (Y E Y | y = F(Da), DuCF})-
If we denote by |¢| the subset of X such that p(|€|)=¢, we have

[ @)= (e Y[y /(G =xeX | f(EP~|F|=p (@), Hence p
1s continuous in . Having in mind that G, is the finest topology of D
for which p is continuous we have 9,CY,. Using it and the theorem 1.1

we obtain 1°,
Consider now the family of all R-saturated sets in the topology T,
gf, and its subfamily G f(X) which is isomorphic to the R-saturated sets
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in G. Let €T 5. Then for some ¥'&J and for all p&€Z we have ¢~! (V) =4G.
Let UcJ be maximal R-saturated set contained in V. Then there exists a
choice function ¢, such that 0o ' (U)=G. [Proof. Let D,€D and D,N\V#9
and D,NCV=#0. Then there exists a choice function ¢, having its value in
D \V and so cpo"l(V)=<po_1(U) what was to be proved]. So every element
of G,=J, is obtained as a projection (being p(U)=05 " (U)=8) of a R-satu-
rated set in G. From the isomorphism of & f(X )|(X|R) and the family of
all R-saturated sets in G it follows 2°.

2. Now we shall establish connection between the power topology on D
and the choice topology on D.

Theorem 2.1. Let G be a topology on X, I, the power topology on
@(X), R an equivalence relation on X and ¢’ an arbitrary topology of X/R.
The equality G’ =T, |(X/R) is valid if and only if J'=¢.

Corollary (Michael). For any equivalence relation R on X the topo-
logy G, |(X/R) is finer than the quotient topology J/R.

Proof of the theorem. Let U,E€J/R. Then U,|(X/R)={4|9#ACX,
A€ X/R and ANU#£@ for some UET}. But for all ¢&Z we have ¢~1(U)
is open according to the definition of &, in D. Besides, we have ¢~'(U)=
={4|4<€ X/R and ¢(4)SU}. But the fact ¢(4)EU for some ¢EZ is equi-
valent to the fact ANU+#® and consequently we have ¢~ (U)=U,|(X/R), i.e.
U |(X/IR)ET,, that is T, /pCY 5.

Conversely, let V'€J,. We have V+={4EX/R|¢ (4)V for some V &I
and some ¢E€Z}. By the above arguments we obtain V., ={4|ANV #0}=
=V, (X/R) for V,£Y,. Consequently V.€T,/g> and G,CT,/g. The proof
is complete.

Proof of the corollary. According to the previous theorem J, (X/R)=9Y2
but according to the theorem 1.1 G,DJ/, that is the corollary.

3. Separation properties

Theorem 3.1. If (X, G) has one of the below listed topological
properties, then (D, J7) has the same topological property:

a) T,,

b) Hausdorff,

¢) Regular,

d) Normal.

Proof. a) If {x} is closed for all x& X, then there exists  €Z such
that ¢~1(x)=D, (where x&D,). Since ¢ is continuous, {D,} is closed in D.

The converse is not true: Example. X={a, b, ¢, d}, I={a, ¢, ac, X, 9}.
Decomposition D={D,, D,}, D,={a, b}, D,={c, d}. T is discrete while I
is not T,—topology.

b) Let X be Hausdorff-space and D,, Dg< D, Dy#Dg. Then there exist
acD, and bE Dy, and asb. Since X is Hausdorff there exists neighbour-
hoods ¥ (a) and V (b) of a and b respectively, such that V (a) NV (b)=@. But
for some choice function o€ Z it is valid ¢(D,)=a and ¢ (Dg)=>b, and con-
sequently, ¢~1(V (a)) which is neighbourhood of D, does not intersect
@1 (V (b)) (which is neighbourhood of Dg). Hence D is Hausdorff-space.

¢) Remark. Regularity in this paper includes that topology is T;.
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Let D,cD and F closed subset of D. Denote by |F| union of all equi-
valence classes D, which are members of F. Since F is closed there exists a
closed set F; contained in |F| which intersects all members of F. Let ac D,.
Evidently ac F,. Since (X, J) is regular there exists open V containing a
and open W containing F, and VN W=@. But for some choice function P
we have ¢ (D,)=a and ¢ (F)CF, so that ¢~1(V) and ¢~! (W) are distinct open
neighbourhood of D, and F respectively.

d) Let F, and F, be two closed sets of (D, J,). Consider subsets of
(X, 9), | F{| and | F,|, where |F|= U 4. Itis evidently | F,|N|F,|=9. Besi-

&F

des there exists a closed set F' contained in | F,| and such that €, N\ F'#£@
for all € € F, or otherwise F, would not be closed. In the same way there
exists a closed set F” contained in | F,| and F”"Ng,#® for all €, F,. Since
(X, 9) is normal there exist disjoint open sets ¥, and ¥, containing | F,| and
| F,| respectively. The sets ¢~! (V) and ¢~! (V,) are disjoint neighbourhoods
of F, and F,; hence (D, J5) is normal.

The theorem is proved.

Obtained results are better than we can conclude on (D, J,/D) consi-
dered as subspace of (2 (X), T,) (see [3], theorem 4.9).
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