CHOICE TOPOLOGY

R. Dacić

(Communicated March 31, 1967)

0. Introduction. Let X be a topological space. The topology on X will be denoted by \mathcal{G} or \mathcal{G}_X . If R is an equivalence relation on X, the quotient set obtained by R we shall denote equivalently by $X|_R$ or $D = \{D_\alpha \mid \alpha \in A, A \text{ some index set}\}$. The quotient topology of $X|_R$ will be denoted by $\mathcal{G}|_R$ or \mathcal{G}_Q . The topology of the subspace A of X is denoted by $\mathcal{G}|_A$. The set of all subsets of X is $\mathcal{P}(X)$. Recall that the power topology \mathcal{G}_* on $\mathcal{P}(X)$ is defined in [2] in the following way. Subbase for \mathcal{G}_* is the family of sets $\{U_* \mid U \in \mathcal{F}\}$ where $U_* = \{A \mid \emptyset \neq A \subset X \text{ and } A \cap U \neq \emptyset\}$.

The most natural topology on $X/_R$ is $\mathcal{G}/_R$. Here we introduce another topology on $X/_R$ which is almost as natural as $\mathcal{G}/_R$. It is denoted by \mathcal{G}_Z and called *choice topology*. The way of introducing of \mathcal{G}_Z is as follows. Let $D = \{D_\alpha \mid \alpha \in A\}$. Consider any mapping $\varphi: D \to X$ defined so that $\varphi(D_\alpha) \in D_\alpha$. Such a mapping is called a *choice function*. Let Z denote the family of all choice functions. \mathcal{G}_Z is the coarsest topology on D for which all choice functions are continuous.

In this note we examine some properties of \mathcal{I}_Z and its connection with the power topology, obtaining as consequence a theorem of Michael [3] and Franklin [1] (as the corollary of the theorem 1.3).

1. Some properties

Theorem 1.1. \mathcal{I}_{z} is not coarser than \mathcal{I}_{ϱ} .

Proof. Consider the mapping $p: X \to D$ defined in the following way: for all $x \in X$ p(x) is the element of D to which x belongs. It is clear that if we have a mapping of a topological space X into the set D and if it is a continuous mapping with respect to some topology \mathcal{I}_1 on D the same mapping must be continuous with respect to any other topology on D which is coarser than \mathcal{I}_1 . To prove that \mathcal{I}_Z is not coarser than \mathcal{I}_Q it is sufficient to prove that from the continuity of p in the topology \mathcal{I}_Z it follows that $\mathcal{I}_Z = \mathcal{I}_Q$. Prove, first, that p is an open mapping. Let O be an open set in X. First of all $p(O) \supseteq \varphi^{-1}(O)$ (*) for some choice function φ . To prove it, consider all those members of D which intersect O. Denote that part by O_D , $O_D = \{A \mid A \in D, \text{ and } A \cap O \neq \emptyset\}$. Consider $O_D = \{A' \mid A' = A \cap O\}$. According to the axiom of choice there exists a choice function φ for O_D and consequently also for O_D . The (*) is proved.

From the definition of the topology \mathcal{G}_Z it follows that $\varphi^{-1}(O)$ is open. Suppose that we have $\mathcal{G}_Z \subset \mathcal{G}_Q$. Then p is continuous mapping of (X, \mathcal{G}) onto (D, \mathcal{G}_Z) since p is continuous mapping of (X, \mathcal{G}) onto (D, \mathcal{G}_Q) . Since p is open and continuous mapping of (X, \mathcal{G}) onto (D, \mathcal{G}_Z) according to ([2], theorem 3.8.) $\mathcal{G}_Z = \mathcal{G}_Q$, as was to be proved. Let us show by an example that \mathcal{G}_Z could be strictly finer than \mathcal{G}_Q . Consider the one dimensional Euclidian space R^1 and take the following partition of $R^1:D_n=(n, n+1)$ and $\overline{D}_n=\{n\}$. Using the same method as in proof of (*) we obtain that \mathcal{G}_Z is discrete. But quotient topology of that set is not discrete since the set $\{n\}$ is not open in R^1 . The proof is complete.

Definition. Decomposition D is *I-non-void* if for each $D_{\alpha} \in D$ there exists some $x \in D_{\alpha}$ and a neighbourhood V(x) of x, with the property

$$D_{\beta} \setminus V(x) \neq \emptyset$$
 for all $\beta \neq \alpha$.

As for $\beta = \alpha$, it is possible both $D_{\alpha} \setminus V \neq \emptyset$ and $D_{\alpha} \setminus V = \emptyset$.

Theorem 1.2. \mathcal{I}_Z is discrete if and only if the decomposition D is I-non-void.

Proof. Let the decomposition D be I-non-void. From that hypothesis and above definition it follows existence of $x \in D_{\alpha}$ and V(x). Take the choice function φ which has the following property: $\varphi(D_{\beta}) \in D_{\beta} \setminus V(x)$ for $\beta \neq \alpha$ and $\varphi(D_{\alpha}) \in V(x)$. We have $\varphi^{-1}(V(x)) = D_{\alpha}$. Hence $\{D_{\alpha}\}$ as singleton is open in (D, \mathcal{G}_Z) . As it is possible deduce for all α , the first part of the statement is proved.

Conversely, suppose that D is not I-non-void. Then for at least one α , all $x \in D_{\alpha}$ and every V(x) there exists at least one $\beta \neq \alpha$ with the property $D_{\beta} \subset V(x)$. Then the relation $\{D_{\alpha}\} = \varphi^{-1}(V(x))$ is not possible, whatever would be φ and V(x), because of the fact that $\varphi^{-1}(V(x))$ contains always at least one point more. It means $\{D_{\alpha}\} \subset \mathcal{I}_Z$ and \mathcal{I}_Z is not discrete.

Theorem 1.3. Let f be continuous function on X onto Y, D=D(f) i. e. $D_{\alpha}=f^{-1}(\alpha)$, $\alpha \in Y$, and let $f \colon D \to Y(f(D_{\alpha})=f(D_{\alpha}))$ be continuous and open, then

$$1^{\circ}$$
 $\mathcal{I}_{Q} = \mathcal{I}_{Z}$

2° $\mathcal{G}_{\varrho} = \mathcal{G}_{\bullet}^{R}(X) \mid (X \mid R)$, where $\mathcal{G}_{\bullet}^{R}(X)$ is the family of all R-saturated sets in the \mathcal{G} and consequently in the \mathcal{G}_{\bullet} (that is $D = \bigcup R_{\alpha}$, $\alpha \in A^{*} \subset A$).

Proof. Prove first that $f^{-1}(O)$ is R-saturated in \mathcal{G} for all $O \in \mathcal{G}_{Y}$. First of all $f^{-1}(O) \in \mathcal{G}$ since f is continuous. Let for some $x \in D_{\alpha}$ we have $f(x) \in O$, then we have $f(x) \in O$ for all $x \in D_{\alpha}$ according to the definition of R.

Consider $\mathcal{G} \in \mathcal{G}_Z$, we have $\mathcal{G}' = \overline{f}(\mathcal{G}) \in \mathcal{G}(Y)$ since \overline{f} is open. From the continuity of f it follows that $f^{-1}(\mathcal{G}') \in \mathcal{G}$ and R-saturated. Set $p^{-1}(\mathcal{G}) = V$, and prove that $V = f^{-1}(\mathcal{G}')$. $f^{-1}(\mathcal{G}') = f^{-1}(\overline{f}(\mathcal{G})) = f^{-1}(\{y \in Y \mid y = \overline{f}(D_\alpha), D_\alpha \in \mathcal{G}\})$. If we denote by $|\mathcal{G}|$ the subset of X such that $p(|\mathcal{G}|) = \mathcal{G}$, we have $f^{-1}(\mathcal{G}') = f^{-1}(\{y \in Y \mid y \in f(|\mathcal{G}|)\}) = \{x \in X \mid f(x) \in \mathcal{G}\} = |\mathcal{G}| = p^{-1}(\mathcal{G})$. Hence p is continuous in \mathcal{G}_Z . Having in mind that \mathcal{G}_Q is the finest topology of D for which p is continuous we have $\mathcal{G}_Z \subset \mathcal{G}_Q$. Using it and the theorem 1.1 we obtain 1° .

Consider now the family of all R-saturated sets in the topology \mathcal{G}_* , \mathcal{G}_*^R , and its subfamily $\mathcal{G}_*^R(X)$ which is isomorphic to the R-saturated sets

in \mathcal{G} . Let $\mathcal{G} \in \mathcal{G}_Z$. Then for some $V \in \mathcal{G}$ and for all $\varphi \in Z$ we have $\varphi^{-1}(V) = \mathcal{G}$. Let $U \in \mathcal{G}$ be maximal R-saturated set contained in V. Then there exists a choice function φ_0 such that $\varphi_0^{-1}(U) = \mathcal{G}$. [Proof. Let $D_\alpha \in D$ and $D_\alpha \cap V \neq \emptyset$ and $D_\alpha \cap CV \neq \emptyset$. Then there exists a choice function φ_0 having its value in $D_\alpha \setminus V$ and so $\varphi_0^{-1}(V) = \varphi_0^{-1}(U)$ what was to be proved]. So every element of $\mathcal{G}_Z = \mathcal{G}_Q$ is obtained as a projection (being $p(U) = \varphi_0^{-1}(U) = \mathcal{G}$) of a R-saturated set in \mathcal{G} . From the isomorphism of $\mathcal{G}_*^R(X) \mid (X \mid R)$ and the family of all R-saturated sets in \mathcal{G} it follows 2° .

2. Now we shall establish connection between the power topology on D and the choice topology on D.

Theorem 2.1. Let \mathcal{G} be a topology on X, \mathcal{G}_* the power topology on $\mathcal{P}(X)$, R an equivalence relation on X and \mathcal{G}' an arbitrary topology of X/R. The equality $\mathcal{G}' = \mathcal{G}_* | (X/R)$ is valid if and only if $\mathcal{G}' = \mathcal{G}_Z$.

Corollary (Michael). For any equivalence relation R on X the topology $\mathcal{G}_*|(X/R)$ is finer than the quotient topology \mathcal{G}/R .

Proof of the theorem. Let $U_* \in \mathcal{G}/R$. Then $U_* \mid (X/R) = \{A \mid \emptyset \neq A \subseteq X, A \in X/R \text{ and } A \cap U \neq \emptyset \text{ for some } U \in \mathcal{G}\}$. But for all $\varphi \in Z$ we have $\varphi^{-1}(U)$ is open according to the definition of \mathcal{G}_Z in D. Besides, we have $\varphi^{-1}(U) = \{A \mid A \in X/R \text{ and } \varphi(A) \in U\}$. But the fact $\varphi(A) \in U$ for some $\varphi \in Z$ is equivalent to the fact $A \cap U \neq \emptyset$ and consequently we have $\varphi^{-1}(U) = U_* \mid (X/R)$, i. e. $U_* \mid (X/R) \in \mathcal{G}_Z$, that is $\mathcal{G}_*/_R \subset \mathcal{G}_Z$.

Conversely, let $V' \in \mathcal{G}_Z$. We have $V'_* = \{A \in X/R \mid \varphi(A) \in V \text{ for some } V \in \mathcal{G} \text{ and some } \varphi \in Z\}$. By the above arguments we obtain $V'_* = \{A \mid A \cap V \neq \emptyset\} = V_* \mid (X/R) \text{ for } V_* \in \mathcal{G}_*$. Consequently $V'_* \in \mathcal{G}_*/_R$, and $\mathcal{G}_Z \subset \mathcal{G}_*/_R$. The proof is complete.

Proof of the corollary. According to the previous theorem $\mathcal{G}_*(X/R) = \mathcal{G}_Z$ but according to the theorem 1.1 $\mathcal{G}_Z \supset \mathcal{G}/R$ that is the corollary.

3. Separation properties

Theorem 3.1. If (X, \mathcal{G}) has one of the below listed topological properties, then (D, \mathcal{G}_Z) has the same topological property:

- a) T_1 ,
- b) Hausdorff,
- c) Regular,
- d) Normal.

Proof. a) If $\{x\}$ is closed for all $x \in X$, then there exists $\varphi \in Z$ such that $\varphi^{-1}(x) = D_{\alpha}$ (where $x \in D_{\alpha}$). Since φ is continuous, $\{D_{\alpha}\}$ is closed in D.

The converse is not true: Example. $X = \{a, b, c, d\}$, $\mathcal{G} = \{a, c, ac, X, \emptyset\}$. Decomposition $D = \{D_1, D_2\}$, $D_1 = \{a, b\}$, $D_2 = \{c, d\}$. \mathcal{G}_Z is discrete while \mathcal{G} is not T_1 —topology.

- b) Let X be Hausdorff-space and D_{α} , $D_{\beta} \in D$, $D_{\alpha} \neq D_{\beta}$. Then there exist $a \in D_{\alpha}$ and $b \in D_{\beta}$, and $a \neq b$. Since X is Hausdorff there exists neighbourhoods V(a) and V(b) of a and b respectively, such that $V(a) \cap V(b) = \emptyset$. But for some choice function $\phi \in Z$ it is valid $\phi(D_{\alpha}) = a$ and $\phi(D_{\beta}) = b$, and consequently, $\phi^{-1}(V(a))$ which is neighbourhood of D_{α} does not intersect $\phi^{-1}(V(b))$ (which is neighbourhood of D_{β}). Hence D is Hausdorff-space.
 - c) Remark. Regularity in this paper includes that topology is T_1 .

Let $D_{\alpha} \in D$ and F closed subset of D. Denote by |F| union of all equivalence classes D_{α} which are members of F. Since F is closed there exists a closed set F_1 contained in |F| which intersects all members of F. Let $a \in D_{\alpha}$. Evidently $a \in F_1$. Since (X, \mathcal{G}) is regular there exists open V containing a and open a containing a and a containing a contain

d) Let F_1 and F_2 be two closed sets of (D, \mathcal{I}_Z) . Consider subsets of (X, \mathcal{I}) , $|F_1|$ and $|F_2|$, where $|F| = \bigcup_{\mathcal{G}} \mathcal{G}$. It is evidently $|F_1| \cap |F_2| = \emptyset$. Besides there exists a closed set F' contained in $|F_1|$ and such that $\mathcal{G}_1 \cap F' \neq \emptyset$ for all $\mathcal{G}_1 \in F_1$ or otherwise F_1 would not be closed. In the same way there exists a closed set F'' contained in $|F_2|$ and $F'' \cap \mathcal{G}_2 \neq \emptyset$ for all $\mathcal{G}_2 \in F_2$. Since (X, \mathcal{I}) is normal there exist disjoint open sets V_1 and V_2 containing $|F_1|$ and $|F_2|$ respectively. The sets $\varphi^{-1}(V_1)$ and $\varphi^{-1}(V_2)$ are disjoint neighbourhoods of F_1 and F_2 ; hence (D, \mathcal{I}_Z) is normal.

The theorem is proved.

Obtained results are better than we can conclude on $(D, \mathcal{G}_*/D)$ considered as subspace of $(\mathcal{P}(X), \mathcal{G}_*)$ (see [3], theorem 4.9).

REFERENCES

- [1] S. P. Franklin, Quotient Topologies from the Power Topologies, Arch. Math. 15 (1964), 341-342.
 - [2] J. L. Kelley, General Topology, New York, 1955.
- [3] E. Michael, Topologies on Spaces of Subsets, Trans. Am. Math. Soc., 71, p. 152-182.