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1. In this paper we shall deal with the following interpolation problem:
Let x; be a system of (2a+1) distinct points in [—1, 1] such that
(L. D) l=x>X> - - >Xgp>Xopp1=—1
and arbitrary numbers:
(1.2) yi(i=1,2,...,2n+1), yi(i=0,1,2,...,n+1),
| yiri=1,2, ...,n),
we seek to find a polynomial g(x) of degree 4n+2 atmost such that
gx)=y (=1,2,...,2n+1)
(1.3) &' (nd=y; (=12,....0), g @)=y & (X2nt1)=rrt1
g )=y (i=1,2,...,n).

We call this process of interpolation the (0; 0, 1, 3) interpolation.

We shall however solve the above interpolation problem when the
abscissas (1. 1) are the points.

(1. 4) xizcos;—E i=0,1,2,...,2n
n
which are the zeros of
def
(1.5) Tonr1 (X) = (1—x3) Uy, (x)
where
(1.6) Uz,,_l(x)=sm,2'(;e, x=cosf, —l<x<l
sin

stands for the (2rn—1)th Tchebycheff polynomial of second kind.

A similar problem of interpolation for the abscissas which are the
zeros of :
(1—=x2) Py (x)

has been solved by the author in his works [1, 2, 3]. The results of A. K. Varma
[5, 6] in this direction on Tchebycheff abscissas deserve a reference here.
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2. With the representation (1.1) of (2rn+ 1) points in [—1, 1], the point
x=0 either falls to x,,’s or it falls {0 x;;:+,’s according as nis odd or even.

The following theorem 1. shows thai in the case of odd number of
distinct symmetrical points of the form 4m-+3 — both the problems of
exsistence and uniqueness have a negative solution.

Theorem I. If n is odd and the 2n+1) points in [—1, 1] have the
representation (1.1) with

(2 1) Xj= Xopto—j (]: 1, 2, ey n)

then - to given numbers (1.2) there is in general no polynomial of degree
<dn+2 such that (1.3) is satisfied. If there exists such a polynomial then
there are infinity of them.

The proof of this theorem is obvious from theorem 1. in [4]. Naturally
we omit the details.

3. Let n be even and the points x;(i=1,2,...,2n+1) in (1.1) be
given by (1.4). We characterise the points

(3. 1) Xo= cos(i—«%)l, i=1,2,...,n

n
in (1.4) as the zeros of T,(x) where
(3.2) T,(x)=cosnb, x=cos —l<x<l

is the nth Tchebycheff polynomial of first kind and
(3.3) x2i+1=cosfi, i=0,1,2,....n
n

as the zeros of (1—x?) U,_,(x) where

(3. 4) Upy (=020 yicoss, —l<x<l
sin 0

stands for thz Tchebycheff polynomial of second kind. So that

(3.5 T, (x::)=0, i=1,2,...,n
and
(3.6) U, 1 (X251 =0, i=1,2,...,n—1.

We shall prove the

Theorem II. If n is even and the (2n+ 1) points in [—1, 1] are given
by (1.4) then to prescribed numbers (1.2) there is a uniguely determined
polynomial g (x) of degree <4n+ 2 such that (1.3) holds.

4. Before proving theorem II we collect some results on Tchebycheff
polynomials of first and second kind which we shall have occassion to use in
the sequel.

The differential equation satisfied by T,(x) is:
4.1 1—x)T," (x)—xT, (x)+n*T,(x)=0
and that by U,_, (x) is:
4.2) (A=x) U, 1 (x)—3x Up_1 (x)+ (n2—1) Up_1 (x)= 0.
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From (3. 2) and (3.4) we have
4.3) L()=1=(=)"T, (=1,

(4.4) Upq=n=(—1y"10,_,(—1);

Let us denote

Is on Tchebycheff abscissas — [

T, (D=m=(—D""'T,/ (=1

7 2“1 ’
Upa (D =" (1) Uy (= 1),

ef
@.5) s (9= 0 (0) = (1 —x) T2(9) Up_ ()

so that owing to (3.5) and (3.6)

(4. 6) o (x) =0, i=1,2, ..., 2n+1

o (x3;) =0,
Now

i=1,2, ..., n

o (%)= 6T, (x2) T, (ai) (1 —x3) Uy (x2) +
+ 6T (o) [(1—%3) Usor (Yo ) — 2%, Uy (52)]
=61, (x2) [Un—1 () (1 =23 ) T (%2) — 22 T/ (x2)} =
- (1=x2) T/ (5a) Unoy (329)]
4.7) = 6T72 (x2) [(1—x2) Uper (Xa))— %1 Upy (5))]

Now from the identity

sin 8 U, (cos 0) =sinn 8,

we hawe on differentiation

—sin20 U,_; (cos 0) +cos 6 U, (cos B) =rncos nb,

(1= Upy () —xU,_1 (x) = —n T, (x)

4.8) (1~~x%{.)U,§_1 () —x, U,y (x2) =0, i=1,2, ..., n.

ie.

or

Also

(4.9) T, (x)=
Hence from (4.7) and (4.8) we have
(4.10) 0" (x37) =0,

We can also verify

nU, 4 (x).

i=1,2, ..., n.

4.11) 6" (X9;) = 2T, (x2) Un_l(xzf-)(l—xgj), J=1,2, ..., n

and

(4.12) o ()= —2n=(—1y o (—1).

We shall also need the
Lemma 4.1. We have

X

(4.13) fT,,(x)dx=i[n‘l
21 n—
1

@ Tpa() | 2
1 nrl 21

79
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Proof. fT,,(x)d.x':f—T,,(cosG) sinfdo

=f—cosnesin6d6
_ 1 [cos(mfl}e_‘cos(n—l}ﬁ}mc

? n+1 n—1
L[ Thsr () Ty ()]

S [t o L APk S BENP
2 n+1 n—1

Hence owing to (4.3)

x

on+1 n—1 n?—1
1

As a corollary to this lemma we have
1

(4. 14) an(x)dx:O or —

—1

2

-1

according as »n is odd or even.
5. Proof of theorem 11. In order to prove theorem II we show that in case
=0, i=1,2, ..., 2n+1,
G.1D y;=0, i=0,1,2, ..., n+1,

yr=0, i=1,2,...,n

the only polynomial of degree <4n+ 2 which satisfy (1.3) is g(x)=0.
Consider the polynomial

(5.2) g (x) = & (X) gu41 ()

where w(x) is defined by (4.5) and 9,4, (x) is a fixed polynomial of degree

n+1. Owing to (4.6) we see that first two conditions of (5.1) are satisfied
except g (£ 1)=0. Now g'" (x,,)=0 gives

(5.3 0" (X27) Gni1 (X2) + 360" (X29) C'pr1 (X2)) =0
which owing to (4.9) and (4. 10) gives

q;,+1(x2,:)=0, ix 1, 2, s, N
ie.

a1 (@ =c1 Ty (%)
with a numerical ¢;. Hence if ¢;540%
Gn1 ()= [Cl f T,(x)dx+ 02]
1

ie. we have
(5.4) g(x)=o(x) [01 f T, (x)dx + 02] .
1

We shall determine the constants ¢, and ¢, by the conditions g’ (4+-1)=0.

1 The results (4.6) and (4.9) show that there is a non-trivial polynomial e (x) of
degree 3n+1 which satisfies almost all the conditions (5. 1) except the two ' (1)=0.

2 For if ¢;=0, g (x)= constant « (x) which does not fulfil all requirments in (1. 3).



Some interpolatory polynomials on Tchebycheff abscissas — 1 81

Thus
(5.9) ¢ @=o @|a [ L@dral+ae®n®
1
so that
g (1)=0 gives ¢,=0 and g (—1)=0 gives
1
(5. 6) —e; o' (—1) [ T, (x)dx=0.
-1

For n even, on account of (4.14) we have ¢;=0. Hence g(x)=0 and our
theorem is proved. :

We incidently see owing to (4. 13) that for z odd the conditions g’ (- =0
determine only ¢, =0 and then there is left a constant ¢; undetermined.

Thus in the case of infinitely many solutions in theorem I for n odd,
the general form of the solution is

g@=cio® [ T,(x)dx
1
or alternately the form

g@)=00 (X)[ Tots () Tpea(x) 2 } .

n+1 n—1 nt—1

6. The interpolatory polynomials. In the following articles we proceed to
obtain the unique polynomials defined for even values of n in theorem II
i.e. to obtain the polynomials X, (x) of degree <4n+2 (n even)® such that
for prescribed numbers «;, B;, vi' s

X,(x)=o, i=1,2, ..., 2n+1;

(6.1) X (D =By Xu(—D=Bantar Xu' (2 =8
X (%) =v;, i=1,2, ..., n

where x;’s are defined by (1.4)!

For this we shall collect in §7 some more results on Tchebycheff
polynomials. In §§ 8—10 we introduce the fundamental polynomials & (x), A (x),
M (x) and establish some of their properties. Finally in §11 we shall give
the explicit form of the polynomials X, (x).

7. (a) Let
A—x% T, (x) .
7.1 A= N i=1,2, ..., n
@D ? (l —X§,~) Ty G i) (r—x33)

represent the fundamental polynomial (degree n+ 1) of Lagrange interpolation
based on our x,; — points in (3. 1) satisfying for j=1,2, ..., n

(1.2) xzi(xg,-):‘; for’:#‘j, Ngi (1) =0.

3 From now onward we shall take » to be even.
¢ Later distinguished by (3.1) and (3. 3).

6 Publications de PlInstitut Mathématique
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One can also see that
(1—x3)) T’ (%)

)\/' ) — . .
* (xzj) (1 _x%i) T, (xy7) (Xpj=—Xz1) ’ ]:/:l
7 3 l'
(7.3) hgi(x:) = —(I{ig
2
‘r X2i n2+5
Ao )= — S .
2l(x21) (l—x‘%_i)‘ 3(1—)(%1)
Also let
(7.4) Raisq (¥) = Un1 ) i=1,2, ..., n—1

’ b
(x—Xgi41) Un—y (x3141)

represent the fundamental polynomial of degree n—2 of Lagrange interpolation
based on the points x4, (1 <j<n—1) given by (3.3). So that

(7.5) apia Oy = for /70, jo 1,20 el

(b) We denote by
def
(1.6 p@= (=T, O—| (1=xk) + § xasr—md | T (50 2a: (.

a polynomial of degree n+ 2 satisfying the conditions:

P(xzj'):(l“x%j) T (x27)s J7i

(7.7 Pl =p (=0,  i=12, ..., n
So that

7.8 P

( ) (x—x,)?

is a polynomial of degree n.
(c) Further if

(7.9) h(x) (—f(l —x* T, (x)—

3 17
—[c3 (x—xp =y (1=3) (x—x2) +(1—x§,.)JT,, (a1) Mo (%)
where
1
(1. 10) | ey — »1—2[(4n2+ 5)(1—x2,)+ 3]
denote a polynomial of degree n+ 3 satisfying

(7.11) h(x5) = (1—=x3, Y T (xz)), Vkatl

h(xa) =h (x20) =h" (x21) =0, i=1,2, ..., n.
Then
(7.12)

is a polynomial of, degree n.

) h(x)

(x—x,)°
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8. The polynomials K;(x), 1<i<2n+1

3. 1) K1(>—v"“1(‘)[(2 X) To () —(1—x) T, ()1[11"“)]

Upr ()
+(16n2~--1)(n2-1) fT () dx
 Upa (® Tix
(B.2)  Konaa @=L+ L) + (1= T @I T [

L A6m—D =1 |

> fT,,(x)dx,
for I<i<n—I1
(1—x22 T} () Ay 1 ()
8.3 Ks; = !
( ) i+ (%) (l—x§i+1)2 T?. (g 121)
nw (x)
1—x®) 2,04 () dx+ C, T, (x)dx
(1—~le 1)3T (x21+1)[ f( ) 2 1( ) [ ( J
and for I<i<n
Up—y ()23, (0) o (%)
8.4 K ()= _ ,
(8.4) 2 (X) Uper () Upa ) (1=23) T ()

X

x[f b9 gy 4 fm") dx + Cq [T,,(x)dx]
(X X21)3 X—Xa

— —~1 -1

where
1
(8.5) Co="" [ (1= g1 (W) dx
—1
1/ 42
8.6 Cs= 221215 | xy;
( ) 5 24(1—_)(2’*‘}' n )xz
1 1
®.7) ;=1L { f BLIC P f T dx}
2 (x—x,)° XX}
1 4

83

and 2;{x), Ayppq (%), ©(x) and A(x) are given by (7.1), (7. 4), (4. 5) and (7. 8)

respectively.

The remark (7.11) shows that the expressions for K,;(x) in (8.4) is a
polynomial of degree 4n-+2 while the expressions for K, (x), K,,+,(x) and
K,;14(x) are also polynomials each of degree 4m-+2, is obvious. We shall
verify that the polynomials K,; i, (x), 0<i<n in (8.1}, (8.2) and (8. 3) satisfy

the following conditions:

6*



84 R. B. Saxena

0 i £ .
8.8 Ksivy (xzjﬂ)-“"‘ for jfﬁ, Kiina(£D)=0;
Kyiv1(x35) = K2:+1 (ij) K3 (ij) 0
(Xej41:0<j<m) (x;:1<j<m)

and the polynomials K,;(x) 1<i<n in (8.4) satisfy
0 ‘i
(8.9 K (x5541)=0; Kz:‘(xa,i)=1 fOl‘;f:;Kzi(il)ZO,

Kéi(xzj) K3/ (x25)=0
(X3;41:0<j<n) (xgi:l<j<m)

For the (8.8) we start with the form (8.3) with constant C; to be chosen
suitabely. Due to (7.5), (4.6), the first two conditions of (8.8) and
K1 (—1)=0 is satisfied at any choice of C, which is fixed in (8. 7) by the
requirement that Kj;.;(1)=0. To see that K;/i,(x:;)=0, we have on
differentiation

6 (1—x3,)2 T,> (x,))
(1 —x§j+1)2 T;,a (Xgj41)
s (1—=x3))P T )

(1 —x§j+l)2 T;n3 (x40

by the use of (4.9) and (4. 11).
The verification of (8.8) for K (x) and Kj,+,(x) is not very difficult.
For (8.9) we start with the form (8.4) for Kj;(x) with constants Cj
and C; to be adjusted later. As before we see that owing to (7. 2), (4. 6) the
first three conditions and K,;{—1)=20 are satisfied at any choice of C; and C;.
Now for js%i we have

3n6” () (1—x3;)

2 243
(1=x3, 1) T, (o)

///

21+1 (x2j)

7\2i+1(x2j)“ Aty (Xz))

{T, (x2))—nUp,_y (X2)%} Rajrr (x97) =0

III 3"‘) (x2j) h(xEJ)
Upy (6) 13 .
(x21) n—-l( 25) [ ! (X) (x)]x—x Up—y (x21) (lpxgi) Tn3 (x2)) (Xpj—x2:0
6Unmi ()23 0n)  6(1=x3) T (0 Ut ()
Up—1(x30) Up—1 (%) (l"xgi):; T;,s (57) (xgj—x9)°

Upei (xz I 3 Tn’ 2] 3
| T LTI Y

Up—s (%2) (1=x3) T () Graj—ai

The constant Cy is determined by the condition Kjy (x,)=0,i=1, 2,
Thus we have

(8. 10) [Upoy (923, (], — iy ) [lim 'O ¢, Tn’(xzi)]:

X=Xx2i (1«—)(%03 Tn3 (x30) | x=x9; (X—x31)3

Now we can verify that

3 17 2072+ 6
8.11 G, 23 = X | ey b s | U ;
( d ) e @O xz,[(l_‘_x%y s 2] r ()
an
. h(x) 1 4nt+9 ,
8. 12 1 R S 7§ R Tn i
@12 gy G—r)® 12 xg{ 21— 2,.] ()
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Therefore from (8. 10), (8.11) and (8. 12) we at once get the value of Cy in
(8.6). Lastly with the known value of Cy the condition K,;(1)=0 gives C,
as given in (8. 7).

9. The polynomials Ay;(x), O0<i<nt1

©.1) Ay ()= —%:”im(x) [ T, (xydx
n ~1
i
n?—1
9-2) Apnra ()= —" =0 () [ T, (x)dx

and for l<i<n,

Ty () Upyey (%) )
9.3 Mgy () = — O Un=1 @ 52 (1
( ) ? (x) Ty (x30) Upy—y (x32) 2 (x)

@ (x) P T, (0
— . . dx+ C SEEEd, T,(x)dx |,
(1'"x§i)2 Tn3 (x20) Up—y (%20 [ f (x—x3)° ¥t f X—Xgi X CS f (X) x:l

—1 —1 —1

where

1[ 1 @n—T)(n+2)
9.4 C,= L :
( ) LD [l»x%i + 3
1 1
©.5) c, =" [ f PO gy 4, fl'»&dx]
2 (x—Xgi)? X—Xg;

—1 -1

and 2,;(x), p(x) and @ (x) are given by (7.1), (7.6) and (4.5) respectively.

On account of the remark made in (7. 8), the expressions in (9.3) and
also in (9.1) and (9.2) are polynomials each of degree 4n+ 2.

We can see after an easy calculation and using (4. 14) that the poly-
nomials A {x) and A,,.,(x) verify the conditions:

(9-6)  A(x)=0; Ag(D=1, Apg(—D=0; A{(xg)=Ag" (x5))=0;
Apnea () =05 Azmsa(—1)=1, Azui2(1)=0;
Adnz (Xe;) = Agnia (%)= 0
(xp1<j<2n+1) (a1 <j<m).

In the following we shall show that the polynomials Ay; (x), 1 <i<nin (8. 3)
fulfil the requirements:

9.7 Agi(x)=0, Az (£1)=0; A;;(xgj):?forf:#{;
j=i
A’z’;(X2j)=O

(x;:1<i<2n+1) (xa;: 1< j<nm).
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The third is seen to be true on account of (7.2) and (4.6). Now for j#i

N [T U 025 0] sy, 367 () pla)
21 (xzj) Tn (x, B U” s (x ) (1 “ng)z T e Unwq (62 (",2;”4'\‘2 i
6Un—s () T (o) N5 () 6(1— x%,)2 T,? () Ups (1)
B Ty (X ) Up -y (x39) (1“x21)2 T} (%21) Un—q (x3) (x2j*“r)

L6U G) T ) [y (3) Tl 2
Ty (%) Up—y (%2) BITO) T o G
=0, Jj#Fi.
at any choice of C, and Cy , on using (4. 11), (7.7) and (7. 3).

As; (x;)=0 gives on account of (4.11),

9-8) (1=33)[T0 () Vs D22,0] L, — [n A O X (xg,)J

X=Xy, (X“X )2
The value of C, is at once determined when one calculates and simplifies:

2
3x2I 2n +

2y i

lim —2® ‘1—[ A A }T (Xa1).

x=xp; (X—X3;)* 4 lvle 3

0.9 [T, U,,ﬂ(x)xg,.(x)];;xz;—[ }T (%o Uy ()

and

The condition Alzs(—l):() holds at any choice of Cg; while .z’\lzi(l):O gives
C, as in (9. 5).

10. The polynomials M,;(x), l<i<n

X

10.1 My (x) = —— & L@ geic, [ T,00d
( ) 2 (%) o (X)) Tn'”" (x2) XX o 9_{ (X) x
—1
where
1
(10.2) C, ="t f“")d
2 XXy

-1
and o(x) is given by (4.5).
For these polynomials of degree 4n-2, it is easily verified that

My (x)=0;, My, (+1)=0; My; (xy;)=0,

(10.3) M ()= for 777
1 j=i
(x:1<j<2n+1) (i l<jgnl)

We shall omit the details.
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11. The polynomials X, (x). The fundamental polynomials determined in
§6 8—10 very easily lead to the explicit expressior of the required interpolatory
polynomials X, (x) in (6.1). Thus we have:

2n+1 n+1 n
(L) 0= S w0+ S BAu () + 3 v My ().
i=1 i=0 i=1

Where K;(x), A;;(x) and M,;(x) are the fundamental polynomials each of
degree 4n-+2 given by (8.1)—(8.4), (9.1)—(9.3) and (10.1) respectively.
Owing to the properties of fundamental polynomials established in (8. §),
(8.9); (9.6), (9.7), (10.3) and the uniqueness theorem, the only polynomials
of degree <4n-+2 satisfying (6.1) are X,(x) given by (11.1).

The convergence behavior of the sequence of polynomials X, (x) will
be dealt in the next comunication.
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