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Let us consider the system of particles Cgi (i=1, 2, 3), where the &' are
Lagrange’s parameters characterizing individual particles of the system.

The classical definition of the rigid body: ,,The system of paricles is
said to be a rigid body if the distance between simultaneous positions of
any two particles of the system is constant in the time and depends only on
the choice of the two particles*, is inconsistent with the theory of relativity
since it is based on the notion of simultaneity which in this theory has not an
absolute meaning. Consequently, adopting the definition quoted above, in the
theory of relativity it might be only said that the system Cgi is rigid with
respect to a presigned observer, and the ,,rigidity* would not be a natural
property of the system itself, from the point of view of the theory of relativity.

Looking for a property of the system of particles Cz which would be
both covariant with respect to the relativistic transformations (and, conse-
quently, independent from the observer), and the classical rigid body under the
classical approximation of the relativistic results, Max Born' gave the following
definition of relativistic rigid body: ,,The system of particles Cyi is said to be
the relativistic rigid body if for any two adjacent particles of the system the
interval between the corresponding world lines, orthogonal to those lines, is
constant during the motion‘. The terms ,,interval*“ and ,,orthogonal* used in
this definition are to be understood in the sense of the space-time metrics.

Although Herglotz® and Noether® demonstrated that the body defined in
this way has in the special theory of relativity only three degrees of freedom,
all papers on the relativistic rigid body are based on Born’s definition, for
this is, at present, the only formulated definition.

Studying the motion of Born’s rigid body we observed two characteristic
properties of that motion. Explaining them we shall follow the notation
Salzman and Taub used in their paper ,,Born-type rigid motion in the relati-
vity“4. Born’s definition given above is due to the same authors. The Latin
subscripts take the values 1, 2, 3, and the Greek ones 1, 2, 3, 4.

1 Max Born, Annralen der Physik, 30, 1 (1909).

: G. Herglotz, Annalen der Physik, 31, 393 (1909—1910).

8 F. Noether, Annalen der Physik, 31, 919 (1909—1910).

4 G. Salzman and A. H. Taub, Physical Review, 95, 1659 (1954).
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In a given system of coordinates x* of the space-time, where xt=ct, ¢
being the velocity of light and ¢ the time in this system of coordinates, the
motjon of the system of particles is determined by

{1) x*=x* (‘gi’ e)a

where 0 is any timelike parameter. It is assumed that the equations (1) repre-
sent a nonsingular transformation between the coordinates x* and the coordi-
nates £, 0. Further, it is supposed that (1) represents, for fixed values of g,
the parametric equations of a timelike line, since by the assumption none of
the particles Cgzi of any system has at any instant the velocity which is equal
or greater than that of light. Let g, be the metric tensor of the space-time
in the x* system of coordinates, such that the signature of the form

ds? = gog dx* dx®
is 2, and that the spacelike interval defined by the form is positive.

Let

ax*
2 Ubm—" o,
@ 08
U* is a timelike fourvector, its modulus is

i
&) (—gp U2 UP)”.
The fourvector
H
@ ut=(—gu UPUY) 2 U*
is the fourvector for which
(5) gaﬁuﬂuﬁ;—.wl’
i.e., u* is the unit four-velocity vector. From (5) follows
6 o u*=0,
where
(N Uy = Zop U,
and uyp is the covariant derivative of the vector u. with respect to xB.
*
* *

Let us consider now the world
lines of two adjacent particles C:i and
Cripdei (see the figure), and on the
world line Cz an event x* The set of
world lines of the light rays through
x* forms the null hypersurface of the
space-time (in the special theory of rela-
tivity the null hypercone) through this
event. We shall call this hypersurface
the null hypersurface of the event x*
This hypersurface intersects the world
Cyirdgi line Crisdsi in two events x*-+dyx*

and x* -+ dpx*. In the middle of the two
' events is the event x*+ dyx* where

Cgi

®) dpxe= 2200

which is also, in the first appréximation, on the world line Ceidsl.
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We shall now prove that the vector dyx* is orthogonal to the vector u*,
i. e., to the world line Cyi, and that, consequently, it represents an orthogonal
interval mentioned in Born’s definition.

From (1), according to (2),

dx— 0% qei s 0% e,
P 20
i.e.,
9) dxo = x%,, dE + U d,

Varying only df (i. e., taking &, 6, and d& as fixed) we obtain various events
on the world line Cgiidei. Because of

(10) dyx*=x%;dE + U%d, 0,
and ’
(11) d2x°‘=x°‘,,~d£i+ Uadze,
and according to (8) and (9),

0
(12) dyx* = x*,; dE + U* i dsb

where d,9 and d,0 are solutions of the equation

(13) Gop (x%,; dEI 4+ U* dB) (xP,;dE/ + UB dB) = 0.

This equation may be writien as

(14) up U UP (dB)2 + 2,5 U X8, dEF- dO + gop x*,; xP,; d¥ s’ =0,
wherefrom

d0+dy0 g5, U* xv, dE

(15
) 2 —gs: U U™

so that (12) becomes

U* x#,; .
dox°‘=(x°‘,,~+U°‘—-gm Xk )di’,

____g-o’r UG UT
or, referring to (4).
(16) dy x* = (x%; + u* uy, x*,;) dE.

The scalar product of the vectors u* and dyx* is

Zap U dy XB = (gop U XP,; + gop u* uP 1wy, x*,; ) d¥,
so that, because of (5),
) Gap u* dy xP = (ug x®,,—urx ?,;)d& =0,

which proves the statement.

It should be noted that it is always possible to find a system of coordi-
nates with respect to which the events x* and any event on the world line
Cyiidgi between the events x*+dyx* and x*+d,x* are simultaneous, so that
the event x* and each of the mentioned events on the world line Cryijdsi
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are, after V. A. Fok®, quasisimultaneous. Therefore we shall call x*+ dgx* the
mean quasisimultaneous event of the world line Cyg. 4 corresponding to the
event x*.

Born’s rigid body can be defined now as follows: ,,The system of particles
C:i is said to be a relativistic rigid body, if during the motion the interval
between the event on the world line of any particle of the system and the
mean quasisimultaneous event corresponding to the former, on the world line
of the adjacent particle, remains constant®.

We think that this definition of Born’s rigid body, based on its just
proved property, is more suitable than Born’s original definition, because it
is closer to its classical analogon.

To explain this, we shall first define some notions of the classical kine-
matics.

An event in classical kinematics is the quantity determined with four
numbers: the three of them x! determine the position of the point in the
space and the fourth, x?, determines the instant in which the point is consi-
dered. Corresponding to each such event there is a point (event) in the four-
dimensional space, which we call the classical space-time.

In the classical space-time the admissible transformations
(18) X = x* (¥, x2, x3, x%),

are subject, except to the requirement of nonsingularity, to the condition

19 o =0,
a9 oxt

which is the consequence of the absolutness of the time in the classical kine-
matics. This means that the events simultaneous in one system of coordinates

x* are simultaneous in every other admissible system of coordinates x* .

Speaking about the metrics of the classical space-time we shall restrict
ourselves only to the intervals between events which lie in the same, whatever,
hyperplane x*=constant and such an interval we shall call, as usually, the
distance.

A continuous set of events corresponds to the motion of a particle, and
such a motion is thus represented in the classical space-time by a line, which
we shall call the classical world line.

The classical kinematics may be regarded as an approximation to the
relativistic one, if the velocities of the particles considered are small in com-
parison with the velocity of light, or, with the same approximation, regarding
the velocity of light as infinite in comparison with the velocities considered,
i. e. that the head of the light wave is simultaneously present in all points of
its path.

Regarding the classical kinematics as such an approximation of the rela-
tivistic one, the classical analogon to the relativistic null hypersurface of the event
x% is a hyperplane through x* — the geometric locus of simultanecus events.
We shall call it the hyperplane of the event x*.

5 B. A. ®ox, Teopua npocmpancmsa, spemenu u mazomenus, Tocrexusnar, Mockea,
1955, crp. 50.
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It is obvious now that the event x* of the classical world line of a
particle Cz and the event on the classical world linc of the particle Cei+dyi,
in which the latter intersects the hyperplane of the event x*, are simultaneous.
Hence, the analogy to the relativistic notion of simultaneous event is established.

Now, the classical definition of the rigid body may be formulated as
follows: ,, The system of particles Cy is said to be the rigid body, if the
distance between the event on the classical world line of any particle of the
system and the event on the classical world line of another particle simulta-
neous to the former remains constant during the motion.

*
* *

Born’s definition requires that the fundamental form

(20) dI?=g.p doyx* doxP |

for fixed values of £ and d%', is independent of the motion, i. e.

(21) (di?y,e = 0.

Substituting (16) into (20), and because of (5) the equation (21) becomes
(22) [(gap + to ) X%,; XB,; dE dE] 0 = O,

wherefrom Salzman and Taub concluded correctly that it must be

(23) [(gap + e tig) x%,; x°,5], 0 = 0.

From (23) Salzman and Taub, by identical transformations, obtained the equations
(24) D,g x*,; x8,;=10,

where

(25) D = U + Up; o+ Uy, W g+ g 1" Uy .

Changing the dummies the equations (24) can be written in the form
(26) Uosp [ X%, (X5, + u® wy xP)) 4 X%, (8, + uP wy, x4,)] = 0.
Multiplying these equations by d& d¥ and summing with respect to i and j,
and exchanging then the dummies i and j in the second term, we obtain
uu; [} x“ai (xB’j + uB Uy x)\aj) dgl dé.vj = 03
or, because of (16),
27 U X2, dgx® dE = 0.
Multiplying (6) with .
ty, x%,; do xB dE
and summing with respect to 8 we obtain
(28) U p U™ Uy X%, dy XP dE' = 0.
Adding (27) to (28) we obtain
U (X%, + U* uy x*,;) dE dgx® =0,
or, because of (16),
(29) Uy p dpx® dgx® = 0.
The equation (29), written in the form
30) gapdy x* (U4 dy x7) =0
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express the result which may be formulated geometrically as follows: ,,During
the motion of Borr’s rigid body, the change of the vector u* by a displacement
from the event x* on the world line Cz to the event x*+dyx* on the world
line Cgi+dyi, which is in the middle between the events on this world line
in which the latter is intersected by the null hypersurface of the event x% is
orthogonal to the displacement‘‘.

This property is equivalent to the definition of Born’s rigid body, what
easily may be seen deducing (24) from (30) by a reverse process, and conse-
quently, it may be taken as the definition of Born’s rigid body.

If we remember the analogy between the displacement, mentioned above,
and the line-segment connecting the simultaneous events of two fixed particles
of the classical rigid body, an analogous property corresponds to the property
of Born’s rigid body, given above, of the classical rigid body, which, expressed
in the vector form, is

— —r —
(resivag —Teg): Oogvag—veg) =0,

where r is the radius vector of the particle, v its velocity, and ¢.% the
scalar product.
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