SOME APPLICATIONS OF A LEMMA ON FOURIER SERIES

by
TORD GANELIUS (Lund)

My interest in the problems I am going to consider has arisen from
the study of some papers by Erdés and Turdn [1—4} Itis my intention
to show that some of their theorems can be derived from a simple lemma
on the Fourier coefficients of bounded integrable functions. By formulating
the results in terms of potential theory we obtain the theorems in a more
general sefting. Some potential-theoretic aspects of the Erdo6s-Turdn
theorem are also given in an interesting paper [7] by Rosenbloom.

The class of functions to be considered consists of the functions
of period 2= which are real, bounded and integrable. If V is a function
of this kind, we shall use the notations

2%

Vi=(27)~ f e—im V(1) d¢

0

w(@)=w(8d; V)= sup +5{V(T)“V(t)}'

<ot

and

If a function h is integrable we shall also use the notation
2%
el = @0 [ 18] dx.
0

The letter C will denote a constant not necessarily the same each
time but every theorem of this paper is true if we put C=100,

LEMMA. If V is a real integrable function of period 2w and if n>0
is an integer, then

sup |V (1 SC[S (1=min) |Vl + 0 (175 V).
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The most interesting special case that will be applied below is obtain-
ed by assuming that V(#)—K¢t is non-increasing for some K. Then
w(n~t; V)< Kn—! and the result follows from theorem IV in my paper [6].
Here 1 give another proof whicli is based on the same idea as the
proof of theorem Il by Erdoés and Turdn [2]

Let {d,} denote the arithmetic means of the partial sums of the
Fourier series for V so that

n—1
S ()=Vo+ X (1—m/n) (V, em+V_, e=imt),
m=0

Then

2%
6a ()= f Vo (¥) V (t—1) d,
0

where ¥, is the Fejér kernel,
—
Vn ()=2an)~* (Sin—é— t) sin? —% at.
We observe that

2n—3 ®

fq,,,(z) dz_g_(m)df(sm%c)"’ de< 4 (nnd)-1,
5 d

27

if 0< &< Since f Vo (8) dr=1, we get
0

3
qu,, (1) de=1—4 (mnd)~L,
)

Put W::sxtxp | V(f)| and suppose that W=s;1p V{t). The other pos-
sibility W=—inf V (f) can be treated in a similar way. To every e >0
we can find a ;‘ such that V(T) > W—e. Then

V() > W—e—w(28) if T-28<t<LT.

Since ¥, =0 it follows that

6, (T—38)=

278§

2%
- f\p,, @) V(T—8—1) dv > (W—t—w (28))f\p,,(g)dr-wfq,,, (%) dr.
0 -8 ]
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We now choose 8=16(nn)~! It may be supposed that n>1 since the
conclusion is frivially valid in the case n=1 as the inequality W |V |+
4+ (2x)Z|Vo|+7w (1) shows. If n>1, then 8 <<n and we can use the
estimates for the integrals of ¥, given above. We must assume that
W—e—w (28) =0, but that can be done since the contrary assumption
immediately implies the lemma. We find that

6, (T—8)> -f:i (W=e—ow (25)) - % W,
and hence

W <26, (T—8)+3 0 (8)+2¢.

Now e is arbitrary and by aid of simple inequalities we find that
n—1
W43 (1—m/n)|Va|+ 18w (a7,
m=0

and the lemma is proved.

THEOREM 1. Let p. be a positive measure on the unit circle, with total

mass 1, and put
2

Cm=(2n)! f e~im d (x).
0

Let v be the ordinary arc measure divided by 2n and let Y be an arc
of the unit circle. For every integer n>1 it holds that

n—1
B = MISC(r+ T (1=mm) m= [ ).
m=1
To prove this theorem we introduce the function
V{)=v({)—pr(t)—A,

where v(f) and p(f) denote the masses on the arc 0 <t <f, and A is a
constant such that
2n

%% vo=f V () dv=0.
0

Evidently
w(@; VIS v ({E+8)—v () =(2r)—1 3,
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and for m >0 it holds that
2% 2%
me(ﬁx)"f e—f”"V(t)dr=(2:rim)"fe‘“"’"‘dV(t)=—(im)"’cm.
0 0
Application of the lemma gives

sup [V S | (0 —m/m) m ea] +@an)).

If the end-points of y are ¢ and &%, then

[ (N —v( =Vt = V() [S2 sup [V(H)],
and theorem 1 is proved.
If p consists of N equal point-masses we obtain a special case which
has been considered by Erdos and Turan [2, theorem Il Their

theorem implies Weyl’s well-known criterion for uniform distribution and
is a finite counterpart of that theorem. ‘

Our further results can be obtained as special cases of the following
variant of the lemma. In this formulation our theorems may be considered
as a kind of tauberian remainder theorems for periodic functions. -

THEOREM 2. Let V be a real periodic function of bounded variation,

and let k be a real periodic integrable function with the Fourier coefficients
25

kp=(2n)"! f e=imt k (v) dt. Suppose k,==0 if m==0. Let us consider the

0
convolution

2
h(t) = [ k(t—c)dV (x),
I

which evidently belongs fo L. If n is a posifive integer, then
n—1
sup | V()= Vol SCll1A]] T [mbn =+ (13 V).
m=1

The proof is immediate by aid of our lemma, We can change the
order of integration by absolute convergence and we obftain
an
hm=(2n)"f e—mv f (v) dv=2mimk, V,,.
0



Some applications of a lemma on Fourler serfes 13
Since [h, || 4]] we get
| |V | S @m)y~ [ mkyy =2 | ]

Application of the lemma to V(f)—V, gives the conclusion of theorem 2.

The following result comes out if we choose k(t)-—»log(?sin%fi in

theorem 2, but we prefer to prove it more directly.

THEOREM 3. Let V be a real periodic function with mean value zero
and suppose that w(8; VY<KS for all 8. If U is a conjugate function of V
and if we put H=||U||, then

sup[V(HI=C (HK)%-

Our assumptions imply that V has bounded variation over a period.
It follows that the conjugate functions belong to L so that H < oo. The
simple relations between the Fourier coefficients of conjugate functions
show that |V, |=|Ux|<H. Hence our lemma gives

[vin|<C{(n—1)H+Kn"1}.
We take n=1+[(K/H}"] and obtain
[V(H] < C(HK)h.

COROLLARY. (cf. Ganelius [5, p. 18]). Supposz that f(2)=u+iv
is an analytic function regular for |z|<<1 and that f(0)=0. If (z=pe't)

u<H, dvjot<K, for p<1,
then

[v]<<C{HK)" for p<l.

The corollary follows from theorem 3 if we consider u(pe’t) and
v(pe'*) as functions of t. We put u*=max (1,0) and z—=min (u, 0) Let
the norm sign denote integration with respect to t. Since u<H and
2n an 2n

f u (pei*) dt=0, we find that — f u— (p eit) dt = f u* (p ety dt < 2 H, and

1] 0 0
hence |lu(pe)|| <2 H. That w (8;v) < K& follows from dv/dt <K,
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THEOREM 4. Let p, t be polar coordinates and let V (p,t) be a har-
monic function regular for p<1. Let r be a fixed number, 0 <r<{1.
IfoV/iat <1 for p<<1, and if

2n
(2::)-1] |V (r, )] dt < H,
1]

then
[V {p, | < C(log™ (1/H))~tlog (2/r) for p< L

If H>=1, then we interprete the right side of the conclusion as+ oo,
and the result is trivial.

For the proof we use the following variant of Poisson’s formula
which is easily proved by calculation of the Fourier coefficients of the
expression on the right:

2z
V(r, )=V (0)=r- f arg (1—ef =9 rp=1) dV (p, t).
0
Putting k (f)=n"" arg (1—-e*rp-') we find that the Fourier coefficients
satisfy 2x |mk, | = (r/p)™ .

Since our assumptions on V also imply that |V,|=|V(0)|<H, it

follows from theorem 2 that

Ve <C (H nil (p/r)™ + n—i) < Ca=t (1+Hn? r=(a-1),

m=0
and since n* <<2n+! we have
V(e DI Cn=t (L +H (2/r)m=1),
If we take n=[(log (2/r))~*log* (1/H)]+1, then H(2/r)»~1 <1, and the
conclusion of theorem 4 follows.

If we substitute the conjugate kernel n—tlog|1—eitr/p| for k in the
proof we obtain the following

COROLLARY. Let U be a conjugate harmonic function to V. If the
assumption ||V (r,-)|| < H in theorem 4 is replaced by || U (r,") || < H, V (0)=0,
then the conclusion of that thevrem is still valid.

That the estimate for |V (p, f}| given in theorem 4 cannot be essen-
tially improved is seen from the following example. Consider the func-
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tions {V,}m=1, where V_(p, )=m~*pmcos mf. Then Hnp=||Va(r, )=
=(2/n)m~*t rm  further sup V, (1, f)=m—* and 0V/ot<<1l. Now
it
log (1/H,) sup |V, (1, | »log (1/r)
¢
if m tends to infinity.

The next two theorems are formulations in terms of potential theory
of theorem 3 and the corollary of theorem 4.

THEOREM 5. Let p. be a positive mass-distribution of fotal mass 1 on
the unit circle E. Denofe the potential of w by u and let v be the equilibrium
distribution of the unit mass on E, i. e. the ordinary arc measure divided by
2n, Let y be an arc of E. Then

1
2

le(r)—v(n|=Clintu]®.

We introduce polar coordinates p, ¢ with vertex in the center of the
circle. If p <1, then

2 2n

u(p,t)=-—flogtpeﬂ-~eff|du(r)=flogll—pef<f~f>|d5(r),
0 [}

where §=v—p.
We now apply theorem 2 to this convolution. The Fourier coeffici-

ents k, of log|l1—pe't| satisfy |2mk,|=p*™ and w (n—4;§) <w(a~!;v)=
=(2rxn)~!. Hence

sup £ -6 | S C{lu(e. ) T pmn-t).

m=1

If the end-points of y are e and es, then
(V) —v (D =18W) -8 () | S 2sup |[E()—&]
<2¢(lu)l S pomkai).

m==1

e
Sincef u(p, t) dt=0, it follows as in the corollary of theorem 3 that
0

lu(e )| S 2 infu (e, H] <2H,
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if H=—i}r31f u. Letting p tend to 1, we find that
e (Y)—v(MI=C((n-1) H+n~Y)

for every integer n>>0. The cho'ce n=1+4[H"] yields the bound given
in the theorem.

The following result is proved by obvious modifications in the last
lines of the proof above.

THEOREM 6. Under the assumptions of theorem 5 and if 0<r <1
it holds that

|1 (r)=v (v) | < Cllog™ (- inf u (r, 1)) | log (2/r).

If theorems 5 and 6 are specialized by the assumption that . con-
sists of N point-masses of weight N—!, we obtain two theorems on the
zeros of polynomials given by Erdoés and Turan [2,3, 4]. More pre-
cisely we obtain the corresponding theorems in the crucial case when all
the zeros are on the unit circle.

This is easily seen if we consider the potential u, of a mass-distri-
bution p, with point-masses N~! in the points {e/*},~; on the unit circle.
Then

2%

uo(z>=—f log | z— €'t | sy () =—N~tlog | Px (2) |,
0

where
N
Pn(2)= TI (z—€'™%).
k=1
1t follows that
—inf uy(2)=N—tlog Max |Pn(2)],"
|z]=1 |z|=1

and if this expression is introduced in our two theorems we get the theo-
rems of Erdds and Turén.

Our last theorem deals with mass-distributions on the interval
I=[—1, 1]. (The corresponding theorem by Erddés and Turan is
given in [1}.)

In this case the equilibrium distribution v satisfies v(y)=
= m-1 (arccos x;—arc cos X,) if y=[x,, x,] and 0<Larc cos x<m.
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THEOREM 7. Lef p be a positive distribution of the mass 1 on I and
let u denote the pofential of p. Then
1
ln(x)=v(v)[ = Cllog c+inful?,

where ¢ =1/2 is the capacity of I

This result will be deduced from theorem 5. We define a mass-
distribution p* on the unit circle in the following way. If 0 <o <V <=,
then we prescribe that if the arc y* has the end-points ¢/® and /¥, then
p*(y)=1/2(Y), where y=(cos ¥, cos ¢) C 1. The definition is completed
on the lower half of the unit circle so that p. will be symmetric with
respect to the real axis. Corresponding to v we get v*(y*)=(2x)"?

(V- ¢). Then

2%
u* (p, f) = — f log | p elt— e [ dp* () =
0

—— [logl(pett—e®) (pett—e=) |ds* (3,
0

and

n
2u*(1,H)=— flog (2| cos t—cos ¢ |) dp* (r)=log % +u(cost).
0

Hence
2 inf u* (1, =log~ +inf g,
£ 2 1
and theorem 7 follows from theorem 5.

Theorems 5 and 6 deal with distributions on the unit circle. In fact
similar theorems are true for every suitably regular curve in a formula-
tion indicated in theorem 7. The proof of this result is postponed, since
the simple tools of the present paper are not quite sufficient for that purpose.

(Received 20 February 1957)
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