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1. INTRODUCTION

Let ¢ (x) be a function of bounded variation in every finite interval
of x >0, assumed (for simplicity) to be such that ¢ (0) = 0. Then the
Riemann-Liouville integral of ¢ (x), of order « >0, is defined by

(L.1) ¢a(x)=$f<x—t>“~1<p(t)dt, 0> 0; @y(x) = p(x).
0

In special cases when we have to define ®, (x) for x <0, we suppose
that ¢ (x) = 0 for x <TO, so that ®,(x) =0 for x<(O0. The object of this
paper is to study a general “converse” or Tauberian theorem in which
a conclusion regarding the order of @y (x), a'>0, as x- oo, emerges
from a standard order condition imposed on ®,(x), « > o, together with
a condition on @ (x) describable as an extension of the well-known con-
dition of ”slow increase”. This theorem may be made the basis of a com-
plete Tauberian theory for @, (x)»; for, arising from it naturally, there is
a host of other converse theorems which have been treated separately
(e. g [2], theorems in §§ 1.6, 1.7, 1.8; [4], Théoreme 1’; [5], Theorem 2),
among them a classical theorem of M. Riesz ([7], §§ 5,6).

The proof of our general theorem is by a (now familiar) method
which depends on certain formulae for differénces of integral and non-
integral orders of the Riemann-Liouville integral, first introduced by
Karamata ([4], Lemme 2) in the case of inlegral orders and then inde-

) The theory will of course cover directly the case in which @ (x) =0 (x%) or
p(x) is summable—(C,a) to sum s=0. The case of ¢ (x) summable—(C, o) to sum
§7#0, being simply that of ¢(x)—s summable—{C,a) to 0, will be indirectly covered.
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pendently by Bosanquet ([1], Theorem 1) in the case of non-integral
orders also®. Minakshisundaram and Rajagopal ([5], [6]) have
used these difference formulae to prove some Tauberian theorems for the
Riesz sum A, (x), « >0, of a series > a0 a, with respect to a sequence {X,}
such that :

0<<2g<<A <2< ous, limd, = oo,
adopling a definition which (to suit our present purpose) may be modified

as under :

a, for n=0,1,2, ...,
(1.2) Ag (x)=Py(x) whenp(x)=A,(x) =] 2n<x

0 for x<<2,.
The principal theorem of this paper includes the said theorems of Minakshi-

sundaram and Rajagopal besides the theorems referred to in the preceding
paragraph.

2. LEMMAS
The “backward-difference-formula” of Karamata-Bosanquet, given in

the following lemma, is easily verified by induction.

LEMMA la. If £>0, p=0,1,2,..., then

p
24 barp ()= B (=1 (§) usp - vt =
(2.1a) -

X 1 tp—1

t
=f dt, f diy... f o, (1,) d,
h

x—h th— tp—y-h

Analogous to (2.1a) there is a backward-difference-formula of non-
integral order 8, 0 <8 <1, which Bosanquet has defined as follows repla-
cing the p-th order integral in (2.1a) by a 8-th order integral:

X

(220) A%, @, (x)saf x-91a, (hat, 0<B<L.
x—h

2) Karamata’'s papers {4], {5] which introduce the difference-formulae in question
are dated November 1939 although they remained unpublished, the first till 1948 and
12 secoad till 1950.
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Combining (2.14) with (2.20), we obtain the next lemma.

LEMMA 2a. If R >0, p=0,1,2..., 0<8<1, then

tp—1

X f tl
+ 8 §—1
(2.3a) AP} Dy pps (=8 f(x-t) dtfdt1 fdtz...ftba(tp)dtp
x—h t—h t—h  tp ,—h
Where

+5 5
AT Dy s ()= A0 A%, Py ptes (%)-

Proof. Clearly (2.3a) is the same as the formula

X

X
AP, Sf(x—t)8‘1®a+p(t)dt=- af(x—t)s-lA’i,,@Hp () dt
-h

x-~h X

which is an immediate deduction from the more general formula

A”_,,aff(x—t)g(t)dt - aff(x—t) AP, g(t)dt
x—h h

x-
true for all f and g integrable for the values of f in question.

The analogues of Lemmas la, 2a for “forward” differences, stated
below, are proved just like these lemmas.

LEMMA 16. If 1 >0, p=0,12,..., then

p ———
Ap_h(Da_}_p(x)Evgo( - 1) ({)’) (I)a—i—p(x +p—vh) =

(2.1b) x+h ti+h  tp_y+h
=fdf1fdtz--.f D, (1) dt,.
X t1 tp—-l

LEMMA 2b. If >0, p=0,1,2,..., 0<<8<1, then
x+h t+h t+h oty +h
(2.30) Aﬁ,’+8¢a+p+8(x) = sf(x +h— 1) dtfdtl fdtz...f D, (£,)dty,
x f f tp

1
where

X+h
b ’ & —
(2.20) AP TS Dy ypis(x) = AfAy Oy yy 5(x) = A’Zsf(x+h—t)8 Lo, ., @) adt.
X
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Besides the above lemmas, there is another auxiliary result required
for our purpose:

LEMMA 3. If a>0, 0<8<1, and W(x) is a positive monotonic
increasing function of x > 0, then the hypothesis
| @g 1 6(x) [<CmW (x), m= a constant,

implies the conclusions:
E
Q) s‘ [- t)8‘1¢)a(t)dt‘<cm W (x),
0

where 0 L E<<x and ¢ = a constant depending on 8,
(iia) [A7%° Dy ps (|2 H em W (x), o1
- p=012...
Gib) |AhTO @, 5 ()12 T em W(x +p + 1h).

When m in the hypothesis can be made arbitrarily small for all large
x, it can be made so in conclusions (i), (iia), (iib) as well.

Conclusion (i) of Lemma 3 is a consequence of well-known results
([2], Lemmas 1.41, 1.42; or [7], §§ 2, 8), while conclusions (iia), (iib), ar.
obvious implications of conclusion (i).

3. THE MAIN THEOREM

The following theorem may be viewed as an extension of a result
proved by Minakshisundaram and Rajagopal ([5], Theorem 2)
a version of the latter being the case o' =0 of the former.

THEOREM 1. Leta, o', a > of >0, and a function 8 (x) > of x > 0be given
In the notation of §§ 1, 2 above, let

@ [ @ ()| <m W (x).
ThenM
— ) B mW (x)
(iia) PO [0 (0) - e = 0] < T
implies
Dy (x) < KM

[0«
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where K = a constant generally involving o, «'; while
e e W(x)
iib bound [®,(x+ ) - O (x <_”L__M_,
(i) 0< t<C6(x) [Per (x4 1) = P ()] < [0 (x)]*—
implies
mW{(x + 6(x))
D (X)) > -K 7
«()= [6 (o=

Proof. Let p>>0 be the greatest integral less than «- o« so that
a=a' +p+8 081

To prove the conclusion associated with (iia), we first note that we
may assume (without loss of generality) 6 (x) < x. For, whenever 0 (x)>x,
we can choose f>>x and obtain from (iig) alone, without using (i) but
remembering that @ (x) = 0 for x 0, the desired conclusion in the form

MW
[0 (x)]*—

Dy (x) <
We can rewrite (2.3a) with o replaced by o, in the form

he— Dy (x) ==

(3.1)
X t tp—y
=A”_*;,8¢>a,+p+s(x)+sf(x-f)5-‘df fdtlm f{%' () - Dy (1,)) dby,
x-—Hh t—h tpy— 1
where .

X= P+ DA< <ty g =20 <ty = W<ty <ty < by gl o < x
Taking (p+1) 4 = 6(x) in (3.1), we find that
1 D (x) <
(3.2) :
¢ tp-1

X
KA D prs(X) |+ f (x - H3lat | dt,-.- f (D (x) ~ Dy (1)} dby,
x=h t=h  tp y—h

where 0 <{x - f, <(p + 1) h = 6 (x) and consequently, by hypothesis (iia),

mW(x) |
o (o

(3.3) D (x) = B () <
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while, by Lemma 3 applied to hypothesis (i),
(34) 187 @y s ()| < 2PH em W (). ¥

Using (3.3) and (3.4) in (3.2), and then dividing by h—=% both sides
of the inequality resulting from (3.2), we conclude that

m W (x)

o, K =2%lc(p+1)—9 4 1.
B IE-¢ w+h)

(3.50) @y (x) <K

This is the conclusion sought, K being a constant which depends on «, o
(the constant 8 involved in ¢ and the constant p being such).

We can prove in the same way the conclusion associated with (iib),
namely

m W(x +6(x))

356) @y (0)>-K ,
(3.55) ) [0 (0]~

, K = the constant in (3.5a),

by changing « to o’ in (2.3b) and then rewriting (2.35) in the form
hE— D s (x) =

x+h tHh tpoyth
— AL Dy, s () - O f(x +h- > at fdtl...f (D (t,) - Dy (X)) dt, .
x f ) »

tp—1

Note. In (3.56) we can replace W (x + 6(x)) by H W(x) when there
is a constant H such that

(3.6) W(x +6(0) < HW ().

3) In appealing to Lemma 3 to establish (3.4) we tacitly assume that § <1. In the
case & = 1, we get (3.4) without appealing to Lemma 3, in the form

aPtl o, (x)| < 27Flem W (x), c=1.
It may be remarked that, in the above inequality, m can be made arbitrarily small for all

large x provided that it can be made so in hypothesis (i) and provided also that x — e (x)
~—> 85 X — 0.



On Tauberian theorems for the Riemann-Liouville integral 33

The two cases (a) and (b) of Theorem I can be combined to produce
the next theorem which, in the case o' = 0, reduces to a theorem of Chan-
drasekharan and Minakshisundaram (2], Theorem 1.83).

THEOREM I'. Suppose that, for x >0, W (x) is positive monotonic increa-
sing and subject to (3.6), and V (x) is positive. Suppose that a, o, Y are given
numbers such that « >a' >0, y >0,

@ | B (x)] < m W (x),
(iia) Oy (x) -~ Py (x-1) < 11V (x) m Wl a—o'+v)
(i) Do (x+8) - by (x) < M1V (x) }f0r0<t< [W] =0 (x),

where I,m are (positive) constants. Then

mW(x)

| D (x)| < HK [I V@@~ 40 Wrlle—a'+v) 2 g g B

where K is a constant independent of | and m.
The deduction of Theorem I' from Theorem I is obvious.

Remarks. (1) By taking - ¢(x) instead of ¢ (x), we can rewrite
Theorem I' with the inequalities in hypotheses (iia), (iib) reversed and V
in these hypotheses changed to - V, but without any other change.

(2) We may restate Theorem I', with its fwo one-sided hypotheses
(iia), (iib) changed to the single two-sided hypothesis :

either @y (x) - Oy (x - #)|

(3.7) }< 1V (x) for 0<t<[

or [ ®y(x+1) - Oy (x)] v ’

mW]l/(a-a’+Y)
but without any change in the essential character of the conclusion, even
dispensing with (3.6) in the case of the first alternative of (3.7). In such
a restatement of Theorem I we may further suppose that either the num-
bers I/, m are both finite or one of them can be made arbitrarily small for
all large x.%» The final result will then be as follows in the case of the
first alternative of (3.7).

Y We justify taking m arbitrarily small for all large x in the conclusion of Theorem I’,
when it is so in the hypothesis of the theorem, by appealing to Lemma 3 in case a—¢’ is
not an integer and to the remark in footnote ® in case a—ao is an integer.

Publications de PInstitut Mathématique 3*
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COROLLARY I'. Suppose that, for x >0, W(x) >0, V(x) >0, and the
first function is monotonic increasing. Suppose that a > o' >0,y > 0, and that,
when x - oo,

(i) Dy (x) = O (W (x)),
. Y(a—o +
({) Dy(x)— Dy(x ~1) =0 V(x) for 0<t= 0((%’) fe Y’)
where the constant in the last O-restriction depends on the constants in the
remaining two O-restrictions. Then, as x - oo,
®, (x) =0 (Vie~a)/(a—o'+v) WY/(a—a’+Y)),

Further, when O is replaced by o in either (i) or (ii), O in the
conclusion will be replaced by o.

4. A THEOREM OF M. RIESZ

The following theorem of M. Riesz, referred to at the outset, is
a deduction from Corollary I

THEOREM II. Suppose that W (x), V (x) are positive monotonic increasing
functions of x > 0. Suppose that, when x - co,

@) D, (x) = O (W (x)) for a given o >0,

(ii) ¢ (x) = O (V (x)).
Then, as x - oo,

Dy (x) = O (VI-Yle wo'lay for all « such that 0 < o' < a.

Further, when O is replaced by o in either (i) or (ii), O in the
conclusion will be replaced by o.

Proof. Case 1: 0 <<a’' <1.

For 0 <<t < x, we have

x—t

T (@) [Py (x) - g (x = 1)] = f [(x = w)®=1 = (x = t = )] ¢ () dus +
0

+f(x - u)* o (u) du.

x—t
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Hence, by hypothesis (ii:,

[Po (%) - Do (x - 1) <

X

x—t
<OV | [{x=t- V- (x-u) Vyau+ [(x-u0)ldu
[6]‘ x[t ]
i.e.
[P (x) = Dy (x - 1) <
<Oowe| et XL L o 2

Thus, in the case 0 < «’'<(1, comparing the above inequality with hypo-
thesis (ii) of Corollary I’ we find that Theorem II is simply the case v = «
of Corollary I

Case 2: o’ > 1. First, supposing the theorem to be true for o'=
a positive integer m, we can prove it for m<ao's m+ 1 where of course
m+ 1< a. For, this supposition is, when (for the sake of definiteness)
we choose O in both hypotheses (i) and (ii),

P, (x) = O (VI=mle wmioy along with g (x) = O (W),
or

®g(x) = O (V¥) along with ®}_,, (x) = O (W),

where V* is positive monotonic increasing. Since 0<a' -m<1, Case 1
shows that our supposition carries with it the implication

ot —m ol—m

q>ir—m (x) = () (V*(l—a—m Wa_m) ’

or
g

Q)a,(x)=O(V « W“), maom+ 1.

Next let r be the greatest inleger less than « Then r > 1 since
o >a' > 1. Also, the theorem being true for o’ =1 (by Case 1), we can
take m = 1,2,...r successively in the argument of the preceding para-
graph and establish the theorem for 1 <o’ <a<(r +1. This completes
the proof.”



36 C. T. Rajagopal

Note. Chandrasekharan and Minakshisundaram have proved
([2), Theorem 1.84) that Theorem II is true in the case « > 1, for any o
such that 1< a’'<a, with O in hypothesis (ii) replaced by Oz (or O)
provided that (3.6) holds for W and also for V in place of W. This result
is readily obtained by combining Theorem II with the case y=a'=1
of Theorem I'.®

5. A LIMITATION THEOREM FOR SERIES SUMMABLE—R (An, @).

The next theorem, due to Chandrasekharan, Minakshisun-
daram and Rajagopal ([6]-A, § 2.4, p. 157; [2], Theorem 1.61, Cases
(i), (ii)), is an easy deduction from Theorem I with hypothesis (iib). In
the case W (x)=x*, a>a =0, it brings out a necessary restriction or
limitation on series summable—-R (XA, a) to O and thence a resiriction
on series so summable to s # 0.9

THEOREM HI. Let W (x) be a positive monotonic increasing function of
x>0. Let Ay(x), a>>0, be defined according to (1.2). Then the hypothesis
(5.1) Ac(x)=0(W(x)), x> 00,
for a given o> 0 implies the conclusion

W(nyy)
()‘n +1 ~ }‘-n)a_w

where r is the greatest integer in a.

(5.2) Aw(x)=o( ) for M < X <hnyp @ =0,1,...1,

Proof. We appeal to Theorem I with both its hypotheses (i), (iib) in
o-forms, i.e. with (iib) a two-sided inequality just like (i) and m arbitra-
rily small for all large x. The conclusion of Theorem I in these special
circumstances is (3.56) in o-form. In Theorem IlI, hypothesis (i) of Theorem I
appears in the o-form (5.1), while hypothesis (iiv) with a’==0 is present
implicitly in the special o-form:

Ag(Qu + 8 = Ag () =0 for 0<t<O(Mp) =Xty = An-

Hence the conclusion of Theorem III follows in the o-form of (3.50)
which is now the same as (5.2) in the case o’ = 0.

5) A more general case of Theorem I, viz. the case y=1, a'=k+1, a=k+r+1,
where k>>0,r >0, was treated earlier by Minakshisundaram and Rajagopal
([5}, Corollary 2.1).

OR (An, @)—summability of £ a, is defined as (C, a)—summability of cp(x) when
@ (x) is the A,—step function A,(x) of (1.2).



On Tauberian theorems for the Riemann-Liouville integral 37

The remaining case o'=1,2,...r of (5.2) is proved by induction
based on the case o’=0. For, if (5.2) holds for an integer o' = m,
0L mgr -1, then it holds for ! =m+1 as well by the following
argument. For A, Cu<<2lnpyy or 0Cu -2, <O,

(53) Am+1 (") - Am+1 (}‘-n) =

u

=f Ap (t) dt = 0(()\n+1 = M) (}\RZ(—)\;\:;Z‘M) =° <T(%;%)

A

(6.3) is hypothesis (iit) of Theorem I in o-form, with ®g.(u) = Ap (o),
X = A, and the immaterial difference that W (x) in the hypothesis is now
replaced by W (x + 6 (x)). Taking (5.3) along with (5.1), and appealing to
the o-form of Theorem I already used, we establish (5.2) for o = m + 1
and so complete the proof.

6. AN EXTENSION OF A THEOREM OF KARAMATA

We have seen that Theorem I with hypothesis (iia) becomes trival
for all x such that 6 (x) > x>0. We shall therefore suppose in this
section that

(6.1) 0o < x,

and further that 0 (x) belongs to the class of positive functions f(x) of
x >0 such that constants H, H' exist, corresponding to constants A, A’
satisfying the condition:

(6.2) 0<H’<;—(0%<H<oo when 0<t <X <h<C oo
X X

These suppositions about 6 (x) result in a simplification of Theorem I in
certain cases; because they make one alone of the Tauberian hypotheses

) In the theorems of this section we suppose that W (x), e (x) belong to the class
of function f restricted by (6.2), although (as it will be evident from the proofs of the
theorems) W and e in the theorems need only be of the less restricted class of functions g
(associated with the particular o in question) which satisfy:

0<H'<§(‘—i~;<ﬂ<m when 0< |y—x| <ne(x), 1< I.
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(iia), (iib) of Theorem I, in a particular form, sufficient for a conclusion
which we expect to result from the two hypotheses together in the same
form. Such a simplification of Theorem I is presented below as a new
theorem.

THEOREM V. Suppose that 0(x), W (x) are functions of the class f and
the second functfion is monotonic increasing. Suppose that a, o' are given
such that 0 L of <«

6.3) Dy(x) =0 (W(x)), x- oo,
and one only of the following conditions is fulfilled:

(6.4a)  Iim bomnd  [Pa(y) - Por(x)]
xrw y—eo(y)<xly WO/ W)=

L wE)>+0 as -0,

(64b) llTn BOUHd [CI)a,(y) - q)cu(x)]
x40 xy<x+eo(x) W(x)/[0(x)]*

Then _ W (x) -
Dor(x) = o(——[e (x)]a_w> , X oo,

Proof. Condition (6.3) is the same as

L w*(e)++0 as e-0.

(6.5) | Do (x)]| << e*—'+1 W (x) for all large x,

e being any small positive number. Conditions (6.4a), (6.46) can be wrilten,
when x - oo, in the forms

w
(6.6a) Pur(y) — Por(x) <[w () + 0 (1)] [GTJ))](“L):: for 0 <<y — x<Ceb(y),
W (x)
(6 (x)]= =
Now (6.5), (6.6a), (6.60) are obvious variants of hypotheses (i), (iia), (iib)
respectively of Theorem I. Hence, assuming that (6.4a) and (6.4b) are

both fulfilled along with (6.3), we can conclude from (3.5¢) and (3.50)
that, as x -+ oo,

(6.66) DPui(y) - Por(x) < [w*(e) + 0 (1)] for 0<<y - x<<eb(x).

W(x +¢e0(x)) @, <K 1 W (x)
oo < D) <K+ oMlfrrs

{ K=2+1c(p+ 1)*~*e + w(g),
K*=2P+1c(p + 1)2— "¢ + w*(e).

(6.7) - [K*+o0(1)]

where
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In (6.7) K, K* can each be made arbitrarily small by choosing e suffi-
ciently small, and W(x+¢€6(x)) =0 (W (x)) on account of W being a
function of the class f satisfying (6.2). Hence (6.7) establishes the conclu-
sion of Theorem IV on the assumption that both (6.4a) and (6.4b) hold.
To complete the proof we have to establish the same conclusion assuming
that either (6.4a) or (6.46) holds. For this purpose it is enough to appeal
to the next lemma,

LEMMA 4. If W(x), 0(x) are any functions of the class f, then (6.4a)
and (6.46) are equivalent.

Proof. It is proved below that (6.4a) follows from (6.46). The proof
that (6.46) follows from (6.4a) is along the same lines.

If
(6.8) y-eb ) <x<y, 0<e<Y,,
then
RS [1 —ew]“l<l+2ew—),
, x y y
i e.

y<x+28i0(y)<x-|—eH9(x),
y

where H is a constant independent of e since x <<y < 2x and 6 (x) is of
the class f which satisfies (6.2). Hence, when (6.456) is given, we obtain
under the conditions (6.8) and x » oo,
Dor(y) = Par(x) _ Par(y) = Par(x) W () [e <y)]“—a'
Wm/emle— W)/ @ W) [9()

<[w*(eH) + o (1)]- O (1)- O (1),

so that (6.4a) follows from (6.4b).

COROLLARY IV. [If, in Theorem 1V, 6(x)=x!—t@-d« W (x)= x;‘+”,
a>=b>-a a>ao =0, we get the essentials of a theorem of Karamata
([4], Théoréme 1).®

The theorem which follows is a modification of Theorem IV resul-
ting from an obvious modification in the proof of the latter theorem.

8) Karamata, assuming that « is an integer, avoids the use of Lemma 3, as explained
in footnote®). In other words, he does not require the condition in the lemma that W (x)
is monotonic increasing, i. e. the condition b = —a.
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THEOREM V. If, in Theorem IV, either of the alternative hypotheses
(6.4a), (6.4b) is changed to one of the following:

(6.9a) {im bound [Par(¥) - Por(x)] < o0(1) as -0,
xr0 y—eb()x<y

(6.90) lim bound [®ar(y) = Par(x)] <0(1) as e-0,
x>0 xy<x+ed(x)

the conclusion will be changed to

G (x) = 0(_W£CL

(6 (x)j*—

Karamata ([3), § 1.1) gives a version of one particular case of

Theorem V, in which &4 (x)= A, (x), Do (x)=A,(x) and A, (x) is a series

defined as in (1.2) but with X, = n. The next section contains similar

results for series, but more general than Karamata’s theorem just referred to.

>+o(l).'

7. SOME TAUBERIAN THEOREMS FOR RIESZ SUMS OF SERIES

The series of this section are all conceived as A,-sfep functions
defined as in (1.2). One of the theorems for them, given below as part
of Theorem VI, is analogous to Corollary IV and depends on Theorem I
(like Theorem IV) as well as the lemma which follows.

LEMMA 5. If Ay(x) is defined as in (1.2), then the condition

(7.1) lim max (@n+ Anpr+ .. @) A < Q(€)» + 0 as -0,
n->x }\.n<}\.m<2\.n+€e()\n)

where
O (x)sxl-@be, g>p a>0,

implies both the following conditions:

72 | bowd Ao (K'")ka‘ Al ) +0(1), m oo,
m— &t m m m

(7.26) . <yb<o;m£ o 4, () ;,,A° () Lw*E)+o0(l), n- oo,
n nT§€ n n

where w (g), w* (g) both tend to +0 as 0.
(7.2a), (7.2b) are, in fact, special cases of (6.4a), (6.4b) respectively
in which
Do (u)=Ay (@), O(u)sul—@d« W (u)=usto,
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Proof. Assuming (7.1), we first establish (7.24). Suppose that
MK =80 () <Apyy  (n<<m),
ALx< yyy (nCyvm = 1),

Then the left-hand member of (7.2a) is

a
(7.3) max"““’r""“*“'“m(l{“) FOr Don— €8 () < 1 < Mg < Aom

a
v+1 m

where the relation between X, ., and 2, gives

O(hm) Aoy Aypq\8 1
l-egl -e 222, or ("‘)< ,
- }‘-m }\m = )‘-m = (1 - e)la'
and
A \I—(a—0Ya €0 (v ra)
}\ m I. v+1 .
}w+1 < Ay < }\-v+1 + 89( v+l) (}\-v+1) S M+ (1 _ g)ll—(a—b)/“l

Hence we can apply (7.1) to (7.3) and obtain (7.2a) in the form

.

—bound Ao ()"m) ; Ao (x) <

<[Q ((1 - e)lle—(a—b)/al) o@ )] 1-g)ai’

Next, assuming (7.1), we prove (7.2b). Suppose that

}"m<}‘-n+ee(}\.n)<}\.m+1 (n<m)’
MYy < My (v m).

Omitting the case v=n in which (7.2b) is trivial, we may suppose that
v>n+ 1. Then the left-hand member of (7.46) is

(74) maxZnx1 ¥ nsat:...a ( ;+1) for hn <My <l K dm < hn +86(00)

a
n+1 n
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where the relation between A,., and A, gives

1<-)‘-;t1‘—1<1+e,

n

Mapt SAK M +80(0) <Appy +80(0yy) (}\

Ay \I—(@—0Ve
)<

n+1
gy +8(1+e)II—EDIag (0, ).

Therefore we can apply (7.1) to (7.4) and get (7.2b) in the form

bound Ay (¥) —aAo (M) <
An <y <An+e0(rn) 28
<Q[(e (14 e)li—@daly 4 o (1)](1 + g)lal.

THEOREM VL. If A4 (x), « >0, is defined as in (1.2) and if we assume
(i) Ag (x) =0 (x*+8) as x- o0,
for a positive a_> - b, along with one of the following hypotheses in
which 6 (x) = x!—(=0* g> p:

(ii) {im max |Gnyy + Guyy + -o.Gn|/Ae<<o0(1) as €0,
n-co }\n<)\m<})n+89(hn)

(ii") lim max (@n+ g + ... an)Aa < o(1) as -0,
n+o AnKAm < hp+e8(hn)

then
Ao () =0(07) as n - oo.

Proof. To prove Theorem VI with hypothesis (ii), we merely appeal
to a case of Theorem IV in which

Dy (x)=Aq (), Pur(x)=A4,(x), 6(x)=xl-(a=dl= W (x)=x*t6,

and the two-sided form of (6.4b) is given with x =X, instead of either
(6.4a) or (6.4b).

To establish Theorem VI with hypothesis (ii’) we argue as in the
proof of Theorem IV, having chosen ®g (x), Por(x), 6 (x), Wix) as before,
but use Lemma 5 in the place where Lemma 4 is used in the said proof.

The following corollary to Theorem VI originated with Ananda
Rau ([2], Corollary 1.81) in its O-form (ii), its Og-form (ii’) being due to
Minakshisundaram and Rajagopal ([5], Corollaries 1.1, 1.2).
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COROLLARY VL. If Aq(x), « >0, is defined as in (1.2) and
@ Ag(x) =0(x9) as x~»oo, for an a>0, ¢ >0,

the one alone of the following two conditions in which p>q—(a+1)

and n»o0:
(ii) an = 0] (}"71 (}‘-n - )\n—l)),
(iil) a, = OR (}"71 (}\n - }‘-n—i))
with

either 2, — Ny =0 Q,@PIE+D) o1 g, = 0p (A P29/ tatD))

ensures
A (A) = 0 EeHDIEHD) 00,

The proof of Corollary VI consists in showing that its conditions
(ii), (ii") yield conditions (ii), (ii’) respectively of Theorem VI with a =
=(pa+1)/(@+1), b=q-a.

The next corollary is a formal generalization of the preceding in the
sense that the latter is the limiting case k=1 =0, #'~! = 1 of the former.

COROLLARY VI Corollary VI can be restated with either (ii) or (ii)
replaced by one of the following conditions in whichp >q ~ (x + 1) and k, k

are constants such that
k>1, k 14k 1=1:

(ii) S a, [ X, = 2y p)i=k = O (EEFIHY)
=1

n
(ir) Y (| + @) 2 (h = 2ymy)t=k = O (WECFDHY)
v=1

with
alp+kY)+ qk"')

either Xy — X, = o WU™P7 NEHED) o gm0 (}\-n at ke

We can deduce Corollary VI’ from Theorem VI by using Holder's
inequality (as in [6], -(A), (B), proofs of Lemmas 2, Ill) and proving
that (i), (ii’) of the former lead to (ii), (ii") respectively of the latter with
a=[a(p+ k=) +qk'~1/(x+ k1), b=gq - a.
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The case a =b=0 of Theorem VI and the corresponding case
p= -1, g =a of Corollary VI are classical Tauberian theorems for series
summable-R (A, ). The case p= -1, ¢ = « of Corollary VI' with hypo-
thesis (ii’) is due to Szasz ([8], implication of Theorem 4), while the same
case of the same corollary with hypothesis (ii) originated with Gana-
pathy Iyer ([2], Corollary 1.82).

The next theorem is the analogue of Theorem V for a series Za,
and its Riesz sum, A, (x}, defined by (1.2).

THEOREM VII. If W (x) and 0 (x) are functions of the class f subject to
(6.2), the former being monotonic increasing, then, from either (i) and (ii)
below o1 (i) and (ii") below:

(1) Ay x) =0 (W(x)) as x»>o00, for an >0,

(i) lim max |@nty + Gnig+onam]=0() as e-0,
nr0 Apg Am< hn + 26 (Ap)

(i) lim max @+ ryy+ ...an) <o0(l) as &0,
) N0 An < Am < A+ €6 (Ap)
there follows:
W (An)

A ) =0 5

>+0(1), n- oo,

Proof. In case (ii) is assumed along with (i), we appeal to a version
of Theorem V for & {x)=A,(x), y(x)=A4,(x) with a two-sided form
of (6.96) in which x = X\,, instead of either (6.9a) or (6.96). In case (ii’)
is assumed along with (i), we proceed as we would to prove Theorem V
for @y (x)=Ay(x), Py (x)=A,(x) and use a lemma (proved just like
Lemma 5) to the effect that (ii") ensures the two conditions:

(7.5a¢) lim bound [Ag(m) — A (W] < w(e)»+0 as &-0.

(7.56) lim bound [Ap(y) - Ap )] K w*(8)» +0 as e-0,
nsw g y<Ant+eb(dn)

which are special cases of (6.9a), (6.96) respectively.

8. CONCLUDING REMARKS

In all the theorems of this paper the conditions on ¢ (x), the function
studied, involve two other functions, either W (x) and 6 (x) or W(x) and
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V(x). W(x) is introduced in an attempt to generalize, as in (6.3), the
idea of (C, a)-summability of ¢ (x) to sum s in the principal case s=0,
while 6 (x) is needed to extend and weaken the condition of slow increase
of ¢(x) as in either (6.9a) or (6.95). The type of a general Tauberian
theorem for ®(x) is Theorem V which answers the question as to what
(6.3) along with either (6.94) or (6.96) implies. Regarding all the other
Tauberian theorems of this paper as variants of Theorem V, we naturally
explain the presence in them of W (x) and 6(x) but not that of V(x).®

To explain the presence of V(x) in some forms of our Tauberian
theorems, we have to keep to the fore the general Hardy-Landau Taube-
rian condition on the terms of a series rather than the Schmidt condition
(of slow increase or decrease) on the sequence of partial sums of the
series. It was an attempt to study the combined effect on series Ay (%)
defined as in (1.2), of an extension of the Hardy-Landau condition and
(3.1) in O-form, that originally led Minakshisundaram and Raja-
gopal to formulate the following theorem ([5], Theorem 1).

THEOREM VIIL. Let W (x), V(x) be positive functions of x>0, of
which the former is monotonic increasing, satisfying the following conditions:

B (x)=[W (x)/V(x)]¥+D L x for an a> 0,
(i) W)/ W(x) =0r(1) for 0<y-x<nb(x), n<1,
VIV () = Or(1) for 0<|y-x|<nb(x), n<l.

Let Aq (x) be defined as in (1.2) and let

(ii) Ag (x) = O(W (x)), x- o0,
(111) an/(}‘-n - )\n—-1) = OR (V(}‘-n))) n- o0,
(IV) }\-n - }‘-n—l < n 8 ()"n)

Then
Ao (Mn) = O [B(X7) V()] = O ([V (A)]H+D [ W (d,)] M 4D),

If hypothesis (ii) is postulated with o instead of O and (iv) with ¢
arbitrarily small for all large n, the conclusion will have o in place of O.

% The entire material of this paper can be presented (and, in fact, had been, in a
manuscript completed before the publication of the book by Chandrasekharan and
Minakshisundaram [2]), in a form involvifig only W (x) and e (x), the latter function
being defined as [m W/IV]/* in a deduction of Theorem Il directly from Theorem I.
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Theorem VIII is essentially the case o’ =0, y =1 of Theorem I.
For, as shown elsewhere ([5], Lemmas 2,3), (iii), (iv) and the part of (i)
relating to V in Theorem VIII together imply that

bound (Ao () — Ag(%)]
Am =08 () <x < = Ox[06 () V ()], m > 0o,
bound [Ao (}’) = Ao ()‘-m)]

A <y<Am+10o(m)
which are precisely the implications of hypotheses (iia), (iib) of Theorem I
when in these hypotheses we choose o ()=A4,(), Y=1, x =2,.

(Received 13 October 1953)

REFERENCES

[1] Bosanquet, L. S. — Note on convexity theorems, J. London Math. Soc. 18 (1943),
pp. 239—248.

[2] Chandrasekharan, K. and Minakshisundaram, S. — Typical means (Tata
Institute of Fundamental Research Monographs on Mathematics and Physics, Ne 1,
Oxford University Press, 1952).

3] Karamata, J. — On an inversion of Cesaro’s method of summing divergent series
(Serbian), Glas. Srpske Akad. Nauka 191 (1948), pp. 1—37.
4] Karamata, J. — Quelques théorémes inverses relatifs aux procédés de sommabilité

de Cesiro et Riesz, Acad. Serbe Sci. Publ. Inst. Math. 3 (1950), pp. 53—T71.

5] Minakshisundaram, M. and Rajagopal, C.T.— An extension of a Tauberian
theorem of L.J. Mordell, Proc. London Math. Soc. (2) 50 (1945), pp. 242—255.

[6] Minakshisundaram, M. and Rajagopal, C.T. —(A) On a Tauberian theorem
of K. Ananda Rau, Quart. J. Math, (Oxford) 17 (1946), pp. 153—161; (B) Postscript
to a Tauberian theorem, loc. cif. 18 (1947), pp. 193—196.

[7] Riesz, M. — Sur un théoréme de la moyenne et ses applications, Acfa Lif. Sci.
Univ. Hungaricae (Sectio Sci. Math)) 1 (1923), pp. 114—126.

[8] Szdsz, O. — Converse theorems of summability for Dirichlet’s series, Trans. Amer.
Math, Soc. 39 (1936), pp. 117—130.



	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif
	039.tif
	040.tif
	041.tif
	042.tif
	043.tif
	044.tif
	045.tif
	046.tif

