A NOTE ON QUASI-ANALYTIC FUNCTIONS

by

I. I. HIRSCHMAN, JR. and D. V. WIDDER

Let $C\{M_n\}$ denote the class of functions f(t) infinitely differentiable for $-\infty < t < \infty$ and such that

$$|f^{(n)}(t)| \le Ak^n M_n$$
, $-\infty < t < \infty$, $n = 0, 1, 2, \dots$ (1)

Here A and k are constants which may depend upon f(t). The class $C\{M_n\}$ is said to be quasi-analytic if and only if for every function f(t) of the class, the conditions

$$f^{(n)}(t_0) = 0$$
 $n = 0, 1, 2, \cdots$ (2)

imply that f(t) is identically zero. Let us define a new sequence of numbers M_n^c as follows:

$$M_n^c = \underset{r \ge 0}{\text{Max}} \frac{r^n}{T(r)}, \quad T(r) = \underset{n \ge 1}{\text{Max}} \frac{r^n}{M_n}. \tag{3}$$

Clearly

$$M_n^c \leq M_n. \tag{4}$$

S. Mandelbrojt, [3], has proved that if

$$\lim_{n\to\infty} M_n^{1/n} = \infty, \tag{5}$$

then the class $C\{M_n\}$ is quasi-analytic if and only if

$$\sum_{n=0}^{\infty} \frac{M_n^c}{M_{n+1}^c} = \infty. \tag{6}$$

Compare also [1].

It is our purpose to give here a new proof of the necessity of this condition. In fact we shall prove the Theorem: If the sequence M_0 , M_1 ,...

satisfies (5), (6), then the function

$$f(t) = \frac{M_0^c}{\pi i} \int_{-i\infty}^{t_{\infty}^c} \frac{e^{st} ds}{(s-1)^2 \prod_{k=1}^{\infty} \left(1 - \frac{s}{a_k}\right)}, \quad a_k = \frac{M_k^c}{M_{k-1}^c},$$
 (7)

belongs to the class $C\{M_n\}$, satisfies (1), but is not identically zero.

The function (7) has appeared in another connection in our work on convolution transforms [2]. By its use we shorten considerably the proof given by Bray and Mandelbrojt, [3] pp. 79—84. However, the function exhibited by them could also be given a form similar to (7) as follows:

$$g(t) = \frac{M_0^c}{\pi i} \int_{-l\infty}^{l\infty} \frac{\sinh^2 s}{s^2} \prod_{k=1}^{\infty} \frac{\sinh(s/a_k)}{s/a_k} e^{st} ds.$$

We turn now to the proof of the theorem. By assumption (6) we see that the infinite product appearing in the integrand (7) converges for all $s=\sigma+i\tau$ and represents an entire function with zeros at the points a_1, a_2, \cdots . We have seen in [2] that

$$\left[\prod_{k=1}^{\infty} \left(1 - \frac{s}{a_k}\right)\right]^{-1} = \theta(|\tau|^{-p}), |\tau| \to \infty$$
 (8)

for any positive number p, uniformly in any finite interval of the σ -axis. This shows $(\sigma = 0, p = 0)$ that the integral (7) converges for all real t. Indeed

$$f^{(n)}(t) = \frac{M_0^c}{\pi i} \int_{-i\infty}^{i\infty} \frac{s^n e^{st} ds}{(1-s)^2 \prod_{k=1}^{\infty} \left(1 - \frac{s}{a_k}\right)} \qquad n = 0, 1, 2, \dots$$

Differentiation under the sign is justified by (8) with p=n. Hence

$$|f^{(n)}(t)| \leq \frac{M_0^c}{\pi} \int_{-\infty}^{\infty} \frac{|\tau|^n d\tau}{(1+\tau^2) \prod_{k=1}^{\infty} \left(1+\frac{\tau^2}{a_k^2}\right)}.$$

Now replace $(1+\tau/a_k)^2$ by $(\tau/a_k)^2$ or by 1 according as $k \le n$ or k > n.

Thus

$$|f^{(n)}(t)| \leq M_0^c a_1 a_2 \cdots a_n \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d\tau}{1+\tau^2} = M_n^c.$$

By (4) we have consequently verified (1) with A = k = 1, so that

$$f(t) \in C\{M_n\}.$$

By Cauchy's theorem, using (8) with p=0, we may shift the path of integration in (7) as follows:

$$f(t) = \frac{M_0^c}{\pi i} \int_{-R-i\infty}^{-R+i\infty} \frac{e^{st} ds}{(s-1)^2 \prod_{k=1}^{\infty} (1-\frac{s}{a_k})}.$$

Here we may choose R as any positive number since the integrand has no singularities for $\tau < 0$. Since the absolute value of the infinite product is certainly less than one on the line $\tau = -R$, we have

$$|f(t)| \leq \frac{M_0^c e^{-Rt}}{\pi} \int_{-\infty}^{\infty} \frac{d\tau}{(R+1)^2 + \tau^2} \leq M_0^c e^{-Rt}.$$

Since R may be arbitrarily large, f(t) must be zero for all positive t. Hence (2) is satisfied for any $t_0 > 0$.

Finally, to see that $f(t) \not\equiv 0$ we appeal to the uniqueness theorem for Fourier transforms. By its definition, f(t) is the Fourier transform of a function belonging to $L(-\infty,\infty)$ which is not zero anywhere. This completes the proof of the theorem.

It can be shown in addition that f(t) is analytic in the half-plane where the real part of t is less than zero. Thus f(t) has the property that

$$\overline{\lim}_{n\to\infty} |f^{(n)}(t)|^{1/n} < \infty, \quad -\infty < t < \infty.$$

Needless to say, there exists no uniform bound. Many special properties of f(t) are described in [2] and [4].

BIBLIOGRAPHY

- [1] T. Carleman "Les fonctions quasi-analytiques", Paris 1926.
- [2] I. I. Hirschman Jr. and D. V. Widder, "The inversion of a general class of convolution transforms", Trans. Amer. Math Soc., vol. 66 (1949), pp. 135-201.
- [3] S. Mandelbrojt, "Analytic functions and quasi-analytic classes of functions", The Rice Institute Pamphlet, vol. 29 (1942), pp. 1-142.
- [4] I. J. Schoenberg, "On totally positive functions, Laplace integrals, and entire functions of the Laguerre-Pólya-Schur type". Proc. Nat. Acad. Sci. U. S. A., vol. 33 (1947), pp. 11—17.