ON A TAUBERIAN THEOREM FOR EULER SUMMABILITY

by P. ERDÓS

Let $\sum a_n$ be an infinite series. Put

$$a_n' = \frac{1}{2^{n+1}} \left(\sum_{k=0}^n \binom{n}{k} a_k \right). \tag{1}$$

 $\sum a_n'$ is said to be the Euler sum of $\sum a_n$.¹⁾ It is easy to see that $\sum a_n'$ converges if $\sum a_n$ converges, but the converse is not true. Euler summability was first studied by $K \cap p \cdot p$.²⁾

W. Meyer-König proved³⁾ that if Σa_n is Euler summable and $a_n=0$ except if $n=n_i$, $n_{i+1}/n_i>c>1$, then Σa_n is convergent. He also conjectured that the conclusion of the theorem would follow from the following weaker condition: $a_n=0$ except if $n=n_i$, where $n_{i+1}-n_i>c n_i^{1/2}$, c>0 any constant. In fact he proved⁴⁾ this conjecture under the further assumption that $|a_n|< n^{\alpha}$ where α is any constant. It is easy to see that this conjecture if true is best possible i. e. if f(n) tends to infinity arbitrarily slowly there exists a series $\Sigma \omega_n$ which is Euler summable but not convergent and for which $a_n=0$ except if $n=n_i$, $n_{i+1}-n_i>n_i^{1/2}/f(n_i)$.

$$s_n' = \frac{1}{2^{n+1}} \left(\sum_{k=0}^n \binom{n}{k} s_k \right).$$

The two methods are equivalent, but for our present purpose the series to series transformation seems to be more suitable.

^{1) (1)} gives a series to series transformation method. The corresponding sequence to sequence method would be

²) Math. Zeitschrift 15 (1922), p. 226-253 and 18 (1923) p. 125-156.

³⁾ Math. Zeitschrift 49 (1943), p. 151-160.

⁴⁾ Math. Zeitschrift 45 (1939), p. 479 - 494.

In the present note we are going to prove the following

Theorem. There exists a constant A > 0 so that if $\sum a_n$ is a series which is Euler summable, and for which $a_n = 0$ except if n = n,

$$n_{i+1} - n_i > A n_i^{1/2},$$
 (2)

then $\sum a_n$ is convergent.

At present I am unable to decide whether A can be any constant greater than 0, in other words I am unable to prove Meyer-König's conjecture.

Let $\binom{n}{m}a_m/2^{n+1}$ be the summand of greatest absolute value in (1). If there are several such terms we consider the one with the greatest index m. Put m = f(n), $F(n) = \binom{n}{m} a_m/2^{n+1}$.

Lemma 1. f(n) is a non-decreasing function of n. To prove lemma 1 it will clearly suffice to show that if

$$\left| \begin{pmatrix} n \\ m \end{pmatrix} a_m \right| \geqslant \left| \begin{pmatrix} n \\ l \end{pmatrix} a_l \right|$$
 for $m > l$, then $\left| \begin{pmatrix} n+1 \\ m \end{pmatrix} a_m \right| > \left| \begin{pmatrix} n+1 \\ l \end{pmatrix} a_l \right|$.

This is true since

$$\left| \binom{n+1}{m} a_m \cdot \left(\binom{n}{m} a_m \right)^{-1} \right| > \left| \binom{n+1}{l} a_l \cdot \left(\binom{n}{l} a_l \right)^{-1} \right|$$

$$\frac{n+1}{n-m+1} > \frac{n+1}{n-l+1} \quad \text{for } m > l.$$

i. e.

Lemma 2. Assume that f(n) > n/2. Then $F(n+1) \geqslant F(n)$.

Put f(n) = m > n/2. We obtain from $F(n+1) \gg \frac{1}{2^{n+2}} \left| \binom{n+1}{m} a_m \right|$

$$F(n+1)/F(n) \geqslant {n+1 \choose m}/2{n \choose m} = \frac{n+1}{2(n-m+1)} \geqslant 1,$$

which proves the lemma.

Lemma 3. Let α be arbitrary. Assume that $|a_n| < n^{\alpha}$ for all n, and $a_n = 0$ except if $n = n_i$, $n_{i+1} - n_i > c n_i^{1/2}$, where c > 0 is an arbitrary positive constant. Then if $\sum a_n$ is Euler summable it is convergent.

This is a theorem of Meyer-König.4)

Because of lemma 3 we can now assume that, for infinitely many n, $|a_n| > n$. We shall show that if an infinite series satisfies (2) and

⁴⁾ Math. Zeitschrift 45 (1939), p. 479-494.

 $|a_n| > n$ for infinitely many n then it cannot be Euler summable. This together with lemma 3 will complete the proof of our theorem. First we prove

Lemma 4. Let $c_1 > 0$ be suitable constant. Then there exist infinitely many integers n satisfying

$$n/2 \le f(n) = f(n+1) = \dots = f(n+t), \quad t \ge \frac{A}{3} n^{1/2}$$
 (3)

and

$$F(n) > c_1 n^{1/a}, F(n+1) > c_1 n^{1/a}, \dots, F(n+t) > c_1 n^{1/a}.$$
 (4)

First of all it is easy to see that there exist infinitely many integers n_i satisfying

$$|a_{n_i}| > n_i$$
, $|a_k| < |a_{n_i}|$ for $1 \leqslant k < n_i$. (5)

To prove (5) it suffices to choose $|a_n| > n$ and define a_{n_i} as the a_k of largest absolute value for $1 \le k \le n$.

Put

$$a'_{2n_i} = \frac{1}{2^{2n_i+1}} \sum_{k=0}^{2n_i} {2n_i \choose k} a_k.$$

By the second inequality of (5) we have $f(2n_i) \ge n_i$, and by the first inequality of (5) for sufficiently large n_i

$$F(2n_i) \geqslant \left| \binom{2n_i}{n_i} a_{n_i} / 2^{2n_i+1} \right| > n_i \binom{2n_i}{n_i} / 2^{2n_i+1} > c_2 n_i^{1/3}.$$
 (6)

Assume first that for infinitely many n satisfying (5) we have $f(2n_i) = n_i$. From lemma 1 we have for $x \ge 0$

$$f(2n_i - x) \leqslant f(2n_i) = n_i. \tag{7}$$

Further, a simple argument shows that for $t \leq n_i - n_{i-1}$ and $j \geq 1$

$$\binom{2n_i-t}{n_i} \geqslant \binom{2n_i-t}{n_{i-j}}.$$
 (8)

Therefore by the second inequality of (5)

$$\left| \binom{2n_i - t}{n_i} a_{\mathbf{z}_i} \right| > \left| \binom{2n_i - t}{n_{i-j}} a_{n_{i-j}} \right|. \tag{9}$$

(7) and (9) imply that for $0 \leqslant t \leqslant n_i - n_{i-1}$

$$f(2n_i - t) = f(2n_i) = n_i. (10)$$

A simple computation gives that for $t < A n_i^{1/2}$

$$\binom{2n_i-t}{n_i} > c_s \binom{2n_i}{n_i} / 2^t. \tag{11}$$

Therefore from (2)⁵⁾ (6) and (11) we have for $t < A n_i^{1/2}$

$$F(2n_{i}-t) \geqslant \frac{1}{2^{2n_{i}-t+1}} {2n_{i}-t \choose n_{i}} |a_{n_{i}}| > c_{8}/2^{2n_{i}+1} {2n_{i} \choose n_{i}} |a_{n_{i}}| > c_{2} c_{3} n_{i}^{1/2} > 1$$

$$(12)$$

(10) and (12) prove our lemma.

Assume next that for all sufficiently large n_i satisfying (5) we have $f(2n_i) > n_i$. Put $n_i = n_{i_0}$, $f(2n_{i_0}) = n_{i_1}$, $f(2n_{i_1}) = n_{i_2}$... There thus exists an infinite sequence n_{i_0} , n_{i_1} , ... satisfying

$$n_{i_0} < n_{i_1} < \dots, 2 n_{i_r} \geqslant n_{i_{r+1}}, f(2 n_{i_r}) = n_{i_{r+1}}.$$
 (13)

To simplify the notation we shall write n_r instead of n_{i_r} whenever there is no danger of confusion. First of all we show that all the n_r satisfy (5). We use induction. By assumption n_0 satisfies (5). Assume that n_r satisfied (5). A simple computation gives for sufficiently large A

$$\left(\frac{2 n_r}{n_{r+1}}\right) < \left(\frac{2 n_r}{n_r + A \left[n_r\right]^{1/2}}\right) < \frac{1}{2} \left(\frac{2 n_r}{n_r}\right).$$

Thus

$$\left| \begin{pmatrix} 2 n_r \\ n_{r+1} \end{pmatrix} a_{n_{r+1}} \right| \geqslant \left| \begin{pmatrix} 2 n_r \\ n_r \end{pmatrix} a_{n_r} \right|$$

implies

$$|a_{n_{r+1}}| > 2 |a_{n_r}| > 2 n_r \geqslant n_{r+1}$$

which is the first inequality of (5). Further since the binomial coefficients $\binom{2n_r}{n_r+1}$ decrease as l increases, it follows from $f(2n_r)=n_{r+1}$ that

$$|a_{n_{r+1}}| > |a_n|$$
 for $n_r \leqslant n < n_{r+1}$.

But then since n_r satisfied the first inequality of (5) it clearly follows that n_{r+1} also satisfied it, which completes our proof.

Next we prove that for all $n \gg 2 n_0$

$$F(n) > c_4 \, n^{1/2}. \tag{14}$$

 $^{^{5}}$) This is the only place where our assumption that A is sufficiently large is essential.

From (13) and lemma 1 it follows that for $n \ge 2 n_0^*$, f(n) > n/2. Hence we have from lemma 2 that for $n \ge 2 n_0$ F(n) is an increasing function of n. Let

$$2n_r \leqslant n < 2n_{r+1} \leqslant 4n_r$$
.

Since n_r satisfies (5) we have

$$F(n) \gg F(2n_r) \gg \left| \binom{2n_r}{n_r} a_{n_r} \right| > c_5 n_r^{1/2} > c_7 n^{1/2}$$
 q. e. d.

Consider now the interval $2 n_{i_0} \leqslant n \leqslant 4 n_{i_0}$. Clearly $n_{i_0} \leqslant f(n) \leqslant 4 n_{i_0}$. Also f(n) must be one of the n_j 's. But by (2) the difference of two consecutive n_j 's is greater than $A n_{i_0}^{-1/2}$, $(n_j > n_{i_0})$. Thus the number of n_j 's in the interval $(n_{i_0}, 4 n_{i_0})$ is less than $3 n_{i_0}^{-1/2}/A$. Hence there must be at least

$$2 n_{i_0} | (3 n_{i_0}/A) | = \frac{2 A}{3} n_{i_0}^{1/2}$$

integers in the interval $(n_{i_0}, 4n_{i_0})$ with the same f(n) and by Lemma 1 they must be consecutive integers say $n, n+1, \ldots n+t$ $t > A/3 n^{1/2}$. Thus (14) completes the proof of Lemma 4.

Now we can prove our theorem. Let n satisfy lemma 4 and choose

$$t = \left[\frac{A}{3} n^{1/2}\right] + 1$$
. Put $\left[\frac{2n+t}{2}\right] = M$. We have $a'_{M} = \frac{1}{2^{M+1}} \sum_{k=0}^{M} {M \choose k} a_{k}$.

We shall show that $|a'_M| > c_6 M^{1/2}$ where c_6 is an absolute constant independent of n. This will of course show that $\sum a'_n$ can not converge, hence $\sum a_n$ was not Euler summable and the proof of our theorem will be complete.

Put $f(M) = n_j$. We have by (4)

$$F(M) = \frac{1}{2^{M+1}} \left| {M \choose n_j} a_{n_j} \right| > c_1 n^{1/2} > c_1 / 2 M^{1/2}.$$
 (15)

We have

$$|a'_{M}| \geqslant \frac{1}{2^{M+1}} \left[\binom{M}{n_{j}} |a_{n_{j}}| - \sum_{n_{r} > n_{j}} \binom{M}{n_{r}} |a_{n_{r}}| - \sum_{n_{r} < n_{j}} \binom{M}{n_{r}} |a_{n_{r}}| \right] =$$

$$= \frac{1}{2^{M+1}} \left[\binom{M}{n_{j}} |a_{n_{j}}| - \Sigma_{1} - \Sigma_{2} \right].$$

$$(16)$$

For an estimate of Σ_1 put r-j=k, then $n_r-n_j>A\,k\,n_j^{1/2}$. Put

$$n+t=M+x$$
, $\frac{A}{6}n^{1/2} \leqslant x \leqslant \frac{A}{6}n^{1/2}+1$.

We have by

$$f(n) = f(n+t) = n_j \leqslant x > \frac{A}{12} M^{1/2}$$

$$\left| \binom{M+x}{n_r} a_{n_r} \right| \leqslant \left| \binom{M+x}{n_i} a_{n_j} \right|$$

Hence

$$\left| \binom{M}{n_r} a_{n_r} \right| \leq \left| \binom{M}{n_j} a_{n_j} \right| \frac{M - n_r + 1}{M - n_j + 1} \cdot \frac{M - n_r + 2}{M - n_j + 2} \cdot \cdot \cdot \cdot \frac{M - n_r + x}{M - n_j + x} <$$

$$< \left| \binom{M}{n_j} a_{n_j} \right| \left(1 - \frac{kA \, n_j^{1/2}}{M} \right)^x < \left| \binom{M}{n_j} a_{n_j} \right| \left(1 - \frac{kA \, (M/2)^{1/2}}{M} \right)^{\frac{A}{12} \, M^{1/2}} <$$

$$< \left| \binom{M}{n_j} a_{n_j} \right| \left(1 - \frac{kA}{2 \, M^{1/2}} \right)^{\frac{A}{12} \, M^{1/2}} < \left| \binom{M}{n_j} a_{n_j} \right| e^{-k \frac{A^2}{24}}$$

since from $f(M) = n_j$, $n_j \gg M/2$ (lemma 4). Thus for sufficiently large A 5)

$$\sum_{1} < \left| {M \choose n_{j}} a_{n_{j}} \right| \sum_{k=1}^{\infty} e^{-k\frac{A^{2}}{24}} < \frac{1}{4} \left| {M \choose n_{j}} a_{n_{j}} \right|. \tag{17}$$

In the same way we can show

$$\sum_{2} < \frac{1}{4} \left| \binom{M}{n_{j}} a_{n_{j}} \right|. \tag{18}$$

Thus by (15), (16), (17) and (18)

$$|a'_{M}| > \frac{1}{2} |\binom{M}{n_{j}} a_{n_{j}}| / 2^{M+1} = \frac{1}{2} F(M) > \frac{c_{1}}{2} M^{1/2}$$

which completes the proof of the theorem.

University of Aberdeen.