
Kragujevac Journal of Mathematics
Volume 47(7) (2023), Pages 1047–1056.

ALMOST MULTI-DIAGONAL DETERMINANTS

PREDRAG RAJKOVIĆ1, LJILJANA RADOVIĆ1, AND JOVAN RAJKOVIĆ2

Abstract. We found motivation for this paper in the conjectures about multi-
diagonal determinants published in a few recent papers. Especially, we were inter-
ested in the case with a few non-zero elements in the lower left corner or/and in
the upper right corner. Our research with changeable free elements lead us to the
systems of partial differential equations. Also, we include some generalizations of
the problems and conjectures.

1. Introduction

These determinants are of the theoretical and applicable interest. We can emphasize
the computational problems related to the such matrices and their determinants
as: the calculation of spectra, permanent, characteristic polynomial, inverse matrix,
power, and decomposition of a matrix. They appear in the numerical methods for
the differential equations. It is known that the three diagonal determinants are very
important in the number theory and the theory of orthogonal polynomials and the
five diagonal determinants in the statistics.

An almost (nearly) five constant diagonal determinant of ordinary order was con-
sidered in the paper [6], and the numerical methods for its numerical computing were
developed. Similar problem was considered in the paper [7, 8].

Recently, [1] in 2020. Conjectures 6.1. and 6.2. about the almost four constant
diagonal unit determinants were formulated. They caused a lot of attention and were
proven a few months later in [9].

But, they initialized other considerations in that direction.
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In the paper [4], the two sided almost constant multi-diagonal determinants were
studied.

Papers about multi-diagonal matrices with equally spaced diagonals appeared soon.
In the papers [10, 11], the multi-diagonal determinants with rare nonzero elements
were considered.

This paper is organized as follows. In the Section 1, it is given the survey of the
papers which deal with the multi-diagonal determinants and nearby multi-diagonal
determinants. The preliminaries, i.e., definitions and known theorems were exposed
in the Section 2. The last section is fulfilled with original contributions to the almost
multi-diagonal determinants and their reduction to the systems of partial differential
equations. We did not see any trial with such approach as we did in the Section 3.
We believe that this point of view can be of interest for all which are investigating in
this area.

2. Multi-Diagonal Determinants

In the paper [3], there is the following definition.

Definition 2.1. A square matrix Pn(r, s) = [pi,j]n−1
i,j=0 is (r, s)-banded matrix if

(2.1) pi,j = 0, for all (i, j) : i− j > r or j − i > s, s, r ∈ N : r + s < n.

The bandwidth of an (r, s)-banded matrix is r + s + 1. In the expanded form, it
can be written as

Pn(r, s) =



p0,0 p0,1 · · · p0,s 0 · · · 0
p1,0 p1,1 p1,s+1 0

... . . . . . .
pr,0 pr,r
0 pr+1,1
... . . . . . . 0

pn−s−1,n−1

0 . . . ...
0 pn−1,n−r−1 · · · pn−1,n−1



.

Let us remind that a rational function f(x1, . . . , xn) is homogeneous of degree k if

f(tx1, . . . , txn) = tkf(x1, . . . , xn), for all (x1, . . . , xn) ∈ Rn.

Lemma 2.1 ([16]). Let Pn(r, s) = [pi,j]n−1
i,j=0 be an (r, s)-banded matrix with the princi-

pal minors πk. Then, for every n > δ =
(
r+s
r

)
, the sequence {πk} satisfies a nontrivial

homogeneous linear recurrence relation of the form

(2.2) πn =
δ∑

k=1
Rkπn−k,
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where Rk is a homogeneous rational function of degree k with entries
{an−i,n−j}0≤i≤δ−1;−s≤j≤r+δ−1.

In the continuation we will deal with the following matrices.
Definition 2.2. A square matrix Pn(r, s;A) = [pi,j]n−1

i,j=0 is (r, s)-constant diagonal
matrix if it is (r, s)-banded matrix and

pi,i+j = aj, j = −r,−r + 1, . . . , s; i = 0, 1, . . . , n− 1.
Consider the constant five-diagonal, i.e., (2, 2)-banded determinants:

πn = πn(2, 2; A5) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 0 · · · 0 0 0
a−1 a0 a1 a2 0 0 0
a−2 a−1 a0 a1 0 0 0
0 a−2 a−1 a0 0 0 0
... . . .
0 0 0 a0 a1 a2 0
0 0 0 a−1 a0 a1 a2
0 0 0 a−2 a−1 a0 a1
0 0 0 0 a−2 a−1 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

,

where
A5 = {a−2, a−1, a0; a1, a2}.

Lemma 2.2 ([15]). The sequence {πn}, where πn = πn(2, 2; A5), satisfies the seventh-
term recurrence relation
(2.3)
πn =a0πn−1 + (a2a−2 − a1a−1)πn−2 + (a2a

2
−1 + a2

1a−2 − 2a0a2a−2)πn−3

+ a2a−2(a2a−2 − a1a−1)πn−4 + a0(a2a−2)2πn−5 − (a2a−2)3πn−6, n = 5, 6, . . .
Example 2.1. The three unit diagonal determinants D3,n = πn(1, 1; {1, 1, 1}) satisfy
the three-term recurrence relation
(2.4) D3,n = D3,n−1 −D3,n−2, n ≥ 5,
with initial values
(2.5) D3,0 = 1, D3,1 = 0.
The general solution of this difference equation and the initial values (2.5) give us the
explicit form of the determinant D3,n with

D3,n = cos
(
nπ

3

)
+ 1√

3
sin

(
nπ

3

)
.

Even more, because of the presence of the cosine and sine function which have the
periods, the determinants D3,n have the periodicity T = 6, and the values:

D3,6n = D3,6n+1 = 1, D3,6n+2 = 0, D3,6n+3 = D3,6n+4 = −1, D3,6n+5 = 0,
for n = 0, 1, . . .
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Example 2.2. Let I4 = {1, 1, 1, 1}. The four unit diagonal determinants

(2.6) D4,n = πn(2, 1; I4) = |di,j|n×n : di,j =


1, if |i− j| ≤ 1,
1, if i = j + 2,
0, others,

satisfy the four-term recurrence relation
D4,n = D4,n−1 −D4,n−2 +D4,n−3.

Its general solution is

D4,n = C1 + C2 cos nπ2 + C3 sin nπ2 .

Using the initial values D4,1 = 1, D4,2 = D4,3 = 0, we find

D4,n = 1
2

(
1 + cos nπ2 + sin nπ2

)
.

Hence, its value is

(2.7) D4,n = 1 + (−1)⌊n/2⌋

2 , n ∈ N,

i.e.,

D4,n =

1, if n ≡ 0 (mod 4) ∨ n ≡ 1 (mod 4),
0, if n ≡ 2 (mod 4) ∨ n ≡ 3 (mod 4).

Remark 2.1. Notice that we will get the same value for the non-symmetric unit
diagonal upper or lower with respect to the main diagonal. But, in some further
considerations, it will be important for conclusions.

Example 2.3. The five unit diagonal determinants D5,n = πn(2, 2; {1}) satisfy the
seven-term recurrence relation
(2.8) D5,n = D5,n−1 +D5,n−5 −D5,n−6, n ≥ 5,
with initial values
(2.9) D5,0 = D5,1 = 1, D5,k = 0, k = 2, 3, 4, D5,5 = 1.
The general solution of this difference equation is

D5,n = C1 + C2n+ C3 cos 4nπ
5 − C4 sin 4nπ

5 + C5 cos 2nπ
5 + C6 sin 2nπ

5 .

Including the initial values (2.9), we find the explicit form of the determinant D5,n
with

C1 = 2
5 , C2 = 0, C3 = 3 −

√
5

10 ,

C4 = −1
5

√
5 −

√
5

2 , C5 = 3 +
√

5
10 , C6 = 1

5

√
5 +

√
5

2 .
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Even more, the determinants D5,n have the periodicity T = 5 and the values:

(2.10) D5,5n = D5,5n+1 = 1, D5,5n+k = 0, k = 2, 3, 4;n ∈ N.

The computation of the exact values of the determinants Dk,n for a lot of k’s and
n’s, shows that we can establish the following conjecture.

Conjecture 2.1. The determinants {D2k,n}n∈N have the periodicity T = 2k. The
determinants {D2k+1,n}n∈N have the periodicity T = 2k + 1 or T = 4k + 2.

Remark 2.2. A useful method for computing multi-diagonal determinants is, if it is
possible, to decompose them into the product of lower and upper triangular matrix.

Remark 2.3. Many papers reals with the multi-diagonal determinants with the special
numbers. For example, the role of the Fibonacci numbers in the nature and science
induce that a lot attention is ascribed them. Numerous papers deal with their prop-
erties and representations (see [14]). They appear like values of special determinant
sequences what was shown in the papers [2, 13] and [12].

Let A(t) be a functional matrix

(2.11) A(t) = [ai,j(t)]n×n .

If we denote by âk(t) the kth row, we can write

(2.12) âk(t) =
[
ak,1(t) ak,2(t) · · · ak,n(t)

]
, A(t) =


â1(t)
â2(t)

...
ân(t)

 .

The kth derivative of the matrix A(t) is

A(k)(t) =
[
a

(k)
i,j (t)

]
n×n

, k ∈ N,

with assumption that all derivatives a(k)
i,j (t) exist.

Lemma 2.3 (Jacobi formula). The derivative of the determinant (2.11) can be ex-
pressed in the form

(2.13) Dt detA(t) =
n∑
k=1

Tk(A; t),
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where

(2.14) T1(A; t) =

∣∣∣∣∣∣∣∣∣∣∣∣

Dtâ1(t)
â2(t)

...
ân−1(t)
ân(t)

∣∣∣∣∣∣∣∣∣∣∣∣
, Tk(A; t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

â1(t)
...

âk−1(t)
D̂tâk(t)
âk+1(t)

...
ân−1(t)
ân(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k = 2, . . . , n.

In more general form, we can find it in [5]:

D det(A)(X) = tr (adj(A)X) ,

i.e.,
D det(A)(X) =

∑
i,j

detMi,jxi,j,

where Mi,j is (i, j)-cofactor of A.
Denote by

(2.15) ∇k,n = Dk,n −Dk.n−1.

3. Some Almost Multi-Diagonal Determinants

There are determinants which have at least an element out of multi-diagonals. The
Lagrange expansion was applied for some easier cases in a few papers (see, for example
[4] and [9]). But, it requires a lot of computation and a lot of difficulties appear.

Here, we will use Jacobi formula for differentiation of determinants (2.11) for finding
their closed form values.

Theorem 3.1. The almost three unit diagonal determinant

A3,n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 y x
1 1 1 0 0 0 z
0 1 1 0 0 0 0
... . . . ...

0 0 0 1 1 0
0 0 0 · · · 1 1 1
0 0 0 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n

: ai,j =



1, if |i− j| ≤ 1,
x, if i = 1 ∧ j = n,

y, if i = 1 ∧ j = n− 1,
z, if i = 2 ∧ j = n,

0, others,

has the value

(3.1) A3,n = (−1)n+1(x− y − z) +D3,n.
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Proof. Applying the Jacobi formula for determinants (2.13), we get the system of
partial differential equations

∂A3,n

∂x
= (−1)n+1,

∂A3,n

∂y
= (−1)n, ∂A3,n

∂z
= (−1)n.

Integrating the first equation, we find
A3,n = (−1)n+1x+ φ(y, z).

Hence, ∂A3,n

∂y
= ∂φ

∂y
= (−1)n implies φ = (−1)ny + ψ(z). Now, we have

A3,n = (−1)n+1x+ (−1)ny + ψ(z).

By differentiation via z, we obtain ∂A3,n

∂z
= ∂ψ

∂z
= (−1)n implies ψ = (−1)nz + C(n).

Finally, we have
A3,n = (−1)n+1(x− y − z) + Cn.

Knowing that A3,n(0, 0, 0) = D3,n, we get the statement. □

Theorem 3.2. The upper almost four unit diagonal determinant

(3.2) A4,n = |ai,j|n×n : ai,j =



1, if |i− j| ≤ 1 ∧ i = j + 2,
x, if i = 1 ∧ j = n,

y, if i = 1 ∧ j = n− 1,
z, if i = 2 ∧ j = n,

0, others,
has the value

A4,n = D4,n + yz + (−1)n
(

−D4,n−1x+ (∇4,n−3 − ∇4,n−4 + ∇4,n−5) (y + z)
)
.

Proof. Derivative of a determinant is the sum of determinants provided by successive
deriving the rows in the given determinant. Hence,

∂A4,n

∂x
= (−1)n−1D4,n−1,

∂A4,n

∂y
= z + (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) ,

∂A4,n

∂z
= y + (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) .

Here, we have the system of three partial linear differential equations with unknown
function A4,n(x, y, z). By integrating the first one, we get

A4,n = (−1)n−1D4,n−1x+ φ(y, z),
where φ(y, z) is an arbitrary differentiable real function. Differentiating A4,n by y, we
find

∂A4,n

∂y
= ∂φ

∂y
= z + (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) ,
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wherefrom
φ = yz + (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) y + ψ(z),

where ψ(z) is an arbitrary differentiable real function. Hence,

A4,n = (−1)n−1D4,n−1x+ yz + (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) y + ψ(z).

Finally, differentiating A4,n by z, we find

∂A4,n

∂z
= y + ψ′(z) = y + (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) ,

wherefrom
ψ = (−1)n (∇4,n−3 − ∇4,n−4 + ∇4,n−5) z + C.

Knowing that A4,n(0, 0, 0) = D4,n, we get the statement. □

Remark 3.1. The statement of the theorem can be written in the from

(3.3) A4,n =


(1 − y)(1 − z), if n ≡ 0 (mod 4),
1 + x+ yz, if n ≡ 1 (mod 4),
−x+ y + (1 + y)z, if n ≡ 2 (mod 4),
yz, if n ≡ 3 (mod 4).

Remark 3.2. When x = b and y = z = a, we confirm the main result in the paper [9].

In the similar way, we can prove the following theorems.

Theorem 3.3. The almost five unit diagonal determinant

(3.4) A5,n = |ai,j|n×n : ai,j =



1, if |i− j| ≤ 2,
x, if i = 1 ∧ j = n,

y, if i = 1 ∧ j = n− 1,
z, if i = 2 ∧ j = n,

0, others,

has the value

A5,n =



(1 − y)(1 − z), if n ≡ 0 (mod 5),
1 + x+ yz, if n ≡ 1 (mod 5),
−x+ y + (1 + y)z, if n ≡ 2 (mod 5),
yz, if n ≡ 3 (mod 5),
yz, if n ≡ 4 (mod 5).

Also, this method can be applied on the two sided almost multiple diagonal deter-
minants considered in the paper [4].
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Theorem 3.4. The two sided almost five unit diagonal determinant

An =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 · · · 0 y x
1 1 1 1 0 0 z
1 1 1 1 0 0 0
... . . . ...

0 0 0 1 1 1
v 0 0 · · · 1 1 1
u w 0 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

: ai,j =



1, if |i− j| ≤ 2,
x, if i = 1 ∧ j = n,

y, if i = 1 ∧ j = n− 1,
z, if i = 2 ∧ j = n,

u, if i = n ∧ j = 1,
v, if i = n− 1 ∧ j = 1,
w, if i = n ∧ j = 2,
0, others,

has the value

A5n = (1 − y)(1 − z)(1 − v)(1 − w),
A5n+1 = 1 + x+ yz + u+ vw,

A5n+2 = −x+ y + (1 + y)z − u+ v + (1 + v)w − xu+ zv + yw,

A5n+3 = yz + vw + (−u+ v + w + vw)x+ (u− w)z + y(u− v + uz),
A5n+4 = yz + vw − vwx+ vwz + y(vw + (−u+ v + w + vw)z).

Proof. Applying again the Jacobi formula for determinants (2.13), we get the system
of partial differential equations. For example, deriving by x, and after that by u, we
find

∂2An
∂x∂u

= −D5,n−2.

We will miss the whole proof because of its largeness. □

4. Conclusions

We researched the closed form for the multiple diagonal determinants with at most
three elements in the opposite corners. Although it seems easy to be done by the
Lagrange expansion, this method requires finding the recurrence relation with large
depth. We pointed to the Jacobi formula for the derivation of the determinants as
useful tool. It will be of interest to continue this research, for example, to examine the
influence of a nonzero element at random position outside of the multiple diagonals
on the determinant value.
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