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RIESZ LACUNARY SEQUENCE SPACES OF FRACTIONAL
DIFFERENCE OPERATOR

KULDIP RAJ, KAVITA SAINI!, AND NEERU SAWHNEY?

ABSTRACT. In this paper, we intend to make new approach to introduce and study
some fractional difference sequence spaces by Riesz mean associated with infinite
matrix and a sequence of modulus functions over n -normed spaces. Various algebraic
and topological properties of these newly formed sequence spaces have been explored
and some inclusion relations concerning these spaces are also establish. Finally, we
make an effort to study the statistical convergence through fractional difference
operator.

1. INTRODUCTION AND PRELIMINARIES

Baliarsingh and Dutta [1] introduced fractional difference operators A7, A% A=7,
A and discussed some topological results among these operators. Meng and Mei
[17] introduced binomial fractional difference sequence spaces by clubbing binomial
matrix and fractional difference operator. Recently, Baliarsingh et al. [4] studied
approximation theorems and statistical convergence in fractional difference sequence
spaces. Also, double difference fractional order sequence spaces has been introduced
by Baliarsingh in [5]. In [23] Nayak et al. introduced some weighted mean fractional
difference sequence spaces. Kirigci and Kadak [15] proposed almost convergent frac-
tional order difference sequence spaces. The reader can refer to the textbooks Basar
[6] and Mursaleen [20] for relevant terminology and required details on the domain
of triangles, sequence spaces and related topics. By N, R and C we denote the sets
of natural, real and complex numbers respectively. Let w be the space of all real or
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complex sequences. For a proper fraction 7, defined the fractional difference operators
AV w — w, AD :w — w and their inverses are as follows:

(1.1) AV(z,) :i(—l)iM:cy+i,
(1.2) AD(z,) :2(—1)"mxm,
(1.3) A (x,) = g(—l)imﬂnm,
(1.4) A (g,) = 2(—1)mm
We suppose that the series defined in (1.1)—(1.4) are convergent. For 4 = I, we have

. _ 1 1 1 5 7 .
® A2xy, =Ty — 5Tpi1 — g2 — 16%0+3 — TogLutd — 35gTuts — 775

1
b A_qu =Ty + %xu—kl + %xu—ﬂ + %xu—i-?) + %xu+4 + %xu—% Ty
; v v B ly—l 83V—2 165 v—3 12?8)5 v—4 2523 v—>5 )
e A2y, =g, + 1z, + STy2+ 15Tv—3 + TogTv—a T 355Tw—5+
For more details about fractional difference operator (see [3]). By I'(m), we denote
the Gamma function of a real number m and m ¢ {0, —1,—-2,—3,...}. Now, by the
definition it will be expressed as associate improper integral, i.e.,

(1.5) L(m) = /0 Tetmlgy,

It is clear from (1.5) if m € N, the set of nonnegative integers, then I'(m + 1) = ml.
For this reason, Gamma function is considered to be a generalization of elementary
factorial function. Currently, we tend to state some properties of Gamma function
that are as follows:

(i) if m € N, then we have I'(m + 1) = m/;

(ii) if m € R\ {0,—1,—-2,-3,...}, then we have I'(m + 1) = mI'(m);

(iii) for particular cases, we have I'(1) =I'(2) = 1, I'(3) = 2!, I'(4) = 3!, ...

Let U and V' be two sequence spaces and A = (ap,) be an infinite matrix of real or
complex numbers. Then we say that A defines a matrix transformation from U into
V' if for every sequence x = (z,) € U, the sequence Ax = {A,(x)}, the A-transform
of x is in V, where

An(z) => apx,, neN.

The idea of n-normed spaces was introduced by Misiak [19]. Let X be a linear space
over the field R of reals of dimension d, where d > n > 2 and n € N. A real valued

function ||-,..., || on X™ satisfying the following four conditions:
(i) [|91,99,...,0,|| = 0 if and only if ¥, ¥, ..., ¥, are linearly dependent in X;
(ii) ||91, 2, ..., Uy]| is invariant under permutation;

(iii) ||B01, D2, ..., Ol = |B] ||V1, Ve, ..., U,]|| for any B € R;
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(iv) ||9 4+, 02, ..., 0n|] < |9, 02, ..., 05| + ||, 02,...,0,|| is called an n-norm

on X and the pair (X, ||-,...,||) is called a n-normed space over the field R. For
more definition and results on n-normed spaces see [13,14,22]. A sequence (x,) in a
n-normed space (X, ||-,...,]|) is said to converge to some L € X if

lim |(x, — L,21,...,2,-1)|| =0, forevery z1,...,2,.1 € X.
A sequence (z,) in a n-normed space (X, ||, ...,||) is said to be Cauchy with respect

to the n-norm if

V%Diinoo (z, —xp, 21, ..., 2n—1)|| =0, for every zy,..., 2,1 € X.
In a n-normed space (X, ||-,...,-||), a sequence (z,) is said to be bounded if for a
positive constant M, ||(z,, 21, ..., 2p-1)]| < M for all zq,..., 2,1 € X.

Let (p,) be a sequence of positive real numbers and P, = p; + ps + - - - + p,, for all
n € N. Thus, the Riesz transformation of z = (z,) is defined as

(1.6) t, = ]in I;p,,xy.
If the sequence (t,) contains a finite limit L, then the sequence (z,) is said to be Riesz
convergent to L. The set of all Riesz convergent sequence is denoted by (R, FP,). Let
us note that if P, — co, as n — oco. Then Riesz mean is regular. If p, = 1 for every
natural number v in (1.6), then Riesz mean reduces to Cesaro mean of order one.
An increasing non-negative integer sequence 0 = (v,.) with vy = 0 and v, —v,,_; — 00
as r — oo is known as lacunary sequence. The intervals determined by 6 will be
denoted by I, = (v,_1,1,]. We write h, = v, —v,_1 and ¢, denotes the ratio . The

v.

space of lacunary strongly convergence was defined by Freedman et al. [10] as follows:

1
Ny = {x = (x,) : Tlirgoh— > |z, — L| = 0 for some L}.

T I/GIT

The space Ny is a BK-space with the norm

ol =5 (- 3 ko )

r VEIT

Let § = (v,) be a lacunary sequence and (p,) be a sequence of positive real numbers
such that Hr = ZVEIT Dv, PI/r = Zue(o,ur} Pv, PVr—l = ZVE(O,I/T_l] Pv, Qr = %7 PO = 0.
Clearly, H. = P, — P, _, and the intervals determine by 6 and (p,) are denoted by
I'=(P, _,,P,] lf wetakep, =1forallv € N, then H,, P,., P, |, Q, and I/ reduce
to h,, v, v,_1, q, and I, respectively.

A function ¢ : X — R is termed as paranorm, where X be a linear metric space,
if following conditions are satisfied

(i) ¥(x) >0 for all x € X;

(ii) ¥(—z) = ¢(x) for all z € X

(iii) ¥z + y) < V(@) + U(y) for all 2,y € X



286 K. RAJ, K. SAINI, AND N. SAWHNEY

(iv) if (A\,) is a sequence of scalars with A\, = A\ asn — oo and (z,) is a sequence
of vectors with ¢ (x,, —x) — 0 as n — oo, then Y(A\,z, — Ax) — 0 as n — 0.

A function § : [0,00) — [0,00) is said to be modulus function if

(i) f(v) = 0 if and only if v = 0;

(i) f(v1 +v2) < f(v1) + f(ve) for all vy, vo;

(iii) f is increasing;

(iv) f is continuous from the right at 0.

The modulus function may be bounded or unbounded. Later, modulus function
has been discussed in [21,25-27,29] and references therein.

Lemma 1.1. Consider f = (f,) be a sequence of modulus functions and 0 < p < 1.
Then for each x > p, we have

2f,(1)(x)
fu(x) < )

For a proper fraction 7, let f = (f,) be a sequence of modulus functions, ¢ = (g,)
be a bounded sequence of strictly positive real numbers, 1 = (1) be a sequence of
strictly positive real numbers and 0 be a lacunary sequence. In this paper we define
the following sequence spaces as follows:

[:Raeafa A(,?),/,L,p,q,fl, ||77”]0
1
:{x = (z,) €w: lim T > by [a,w {fy<

T vel,

- qv
,uVA(”)a:V, 2. ,zn_luﬂ } = O},
[Ra 07 fa Aﬁ/)a K, P, qv‘Aa ||7 R ||]
. 1
:{x =(z,) Ew: TILrgO I ;lpy [am/ {fv(

for some L > 0}

,u,,A(:*):BV —L,z,... ,zn_luﬂqu} =0,

and

[:R707f7A(:Y)7,u’7p7 Q7‘A7 H? vy H]OO

:{Q; = (x,) Ew: suphlrr > o [anu {ﬁ(

r I/EIT

/LZ,A(:Y).Z',,, 21, .. ,zanﬂqu} < oo}.

If the sequence x = () is convergent to the limit L in

[R797f7 A(:Y)Jlu’ap7Q7‘A7 H7 ey H]

we denote it by [R,0,§, AP u,p, ¢, A, |-,..., ||| = limz = L.
Suppose f(x) = x. Then above spaces reduces to [R,0, AP . p, q, A, |- ..., Ilo,
(R, 0, A 1, p, ¢, A, -5l and [R, 0, A, p, g, Al [l]oo-

By taking ¢ = (g,) = 1 for all v € N, then we get the spaces [R,0,§, AT u,p, A,
||'a ceey '||]07 [:Ra Ha fa Ah)?llﬂpaﬂa ||7 ceey ||] and [:Ra 6)’ fa A(7)7#7p7‘Aa ||7 ceey ||]oo
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Suppose p, = 1 for all v € N, then we get the spaces as follows:
[(‘ZGM fa Aﬁ)?ﬂ) Q7'A7 ”7 ) “]0
1
:{x =(z,) €Ew: rh—>1}>loh7 Z A {f,,(

r I/GIT

[GOTafa AW)?l%qa'Aa ”7 B “]

:{x = (2) €w: Tlggo; > [f(

e AD gy, 20 ,zanﬂqy = O},

,LLZ,A(XY)x,, —L,z, ... ,zn_lHﬂqV = 0}

r VEIT
and
[697»7 fa Aﬁ/)a H, Q7‘A7 ||’ ey ||]OO
1 ~ qu
:{x = (wl,) cw: suph— Z Ay fl,( MVA(’Y)xV,zl, .. ,zanﬂ < oo}.
r r llel'r

Suppose (p,) be a sequence of positive numbers and P, = p; + ps + ... + p,. Now, we
define the sequence spaces as follows:

[R7f7 A(ﬁ)nuup)qw’qa ||77||]0
1
_{.I' = (:CV) cw: nh—golofn;py |:am/ {fu(
[R7f7 A(ﬁ)nuup)qw’qa ||77||]

_{x — (5,) €w: ggo;nilp” [an,, [f(

/L,,A(;/)l',,, 21, ,zanﬂqu} = O},

_ qv
u,,Amw,, —L,z,... ,zanﬂ } = O}
and

[R, fa A(:Y)muapa Q7‘A7 H? ceey H]OO

:{a: = (z,) e w: Sup;nlipy [anu {h(

n

,uVA(&)a:V, 2y ,Zn_luﬂqy} < oo}

If 0 < q, <supgq, = D, C = max{1,2P7!}. Then
(1.7) ey +dy|" < C(len|™ + [d]|™),

for every natural number v and ¢,,d, € R.

The main purpose of this paper is to introduce and study some lacunary convergent
sequence spaces defined by Riesz mean via modulus functions over n—normed spaces.
We shall make an effort to study some interesting algebraic and topological properties
of concerning sequence spaces. Also, we examine some interrelations between these
sequence spaces.
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2. MAIN RESULTS

Theorem 2.1. Suppose f = (f,) be a sequence of modulus functions, AT be a
fractional difference operator, p = (u,) be a sequence of positive real numbers and
q = (q,) be a bounded sequence of positive real numbers. Then the sequence spaces

[*{Ra 97 fa A(:Y)7 Py Q7‘A7 H7 BRI '||]07 [:Rw 67 fa A(’~Y)7 Ky Py q?‘Aa ”7 SR H] and [:Rw 07 f7 A(:Y)7 K,
D, ¢, A, |-+l are linear spaces over the field R of real numbers.
PT’OOf. Consider z = (J}V)ay = (yl/) € [:Raevfa A(:Y)auvp7qa‘Aa ||7 ceey ||]0 and aaﬁ € R.

Since f is additive and by using inequality (1.7), we have

; > [anu {h(

r VEIT

~ qu
AP, + )z szt ])] ]

<i > [a {f <|a|’ ADg, 2 2z H)}qq
_Hr Vejrpu nv | v Hy vy~ly sy ~n—1
1 ~ qv
+ F ZI: DPv |:am/ |:f1/<’6” /LVA(’Y)y,/, 21yt >Zn1H>:| :|
T vely
<C’i > {a [f ( ADg, » z H)]qy]
= Hr VEITpV nv | Jv Hv vy~ly -y An—1
1 - qv
+ CF Z Pv {anu [fu( MVA(FY)yw 21y Zn—lH)] ]
T vel,

—0 as r— oo.

Hence, [R,0,§,AD 1, p,q, A, ||, ...,-|]Jo is a linear space. Similarly, we can prove
others. 0

Theorem 2.2. Let f = (f,) be a sequence of modulus functions and q¢ = (q,)
be a bounded sequence of strictly positive real numbers. Then the sequence space
[R, 0,5, A p,p,q, A, ..., |l is a paranormed space with respect to the paranorm

> [anu [ﬁ( AV, 2, anH)]q]>A14

I/EI’r

1
H,

(z) = sup (

where M = max{1,sup, ¢, < co}.

Proof. Consider z = (x,),y = () € [R,0,§,AD u,p,q, Al ..., |[lo. Clearly,
(x) > 0 and ¢(0) = 0. Now, by using Minkowski’s inequality, we get

(; > {any [fy(

r Z/EIT

< (; > {aw [fy<

T vel,

&~

- qu
e 4 )] ])

1

1A, 5, zn_lH)]quM
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) a7\ ¥
/’LVA(’Y)yZMZl?.“ 7%11”)} ]) .
r VEIT
Hence, ¢(z +y) < ¢(z) + ¥ (y).
Finally, we prove that the scalar multiplication is continuous. Let v be any complex
number. Then
i

where K, is a positive integer such that v < K. Now, let v — 0 for any fixed = with
(x) # 0. So, by using definition of § for |y| < 1, we have

1
T Z Pv [anu |:f1/(

H

r ZIEIT

+ (; > o {any [b(

Y(yz) =sup (; > [any

r I/EI’r

- qv M D
MVA(v)ryxV,zl,... ’anu)] D < K’yMw(iU)y

~ qV
(2'1) MVA('Y),YIV7 2, ’Z"_1H>] <e€, forr> 7’0(6).

Since f is continuous and taking + small enough, for 1 < r < ry, we have

L > fy(

Hr l/elr
Now, by combining (2.1) and (2.2) implies that ¢ (yz) — 0 as v — 0. Thus, the space
[R, 0,5, A9 1,p,q, A, |- ...,|]]o is a paranormed space with respect to the paranorm

¥(-). O

Theorem 2.3. Suppose f = (f,) be a sequence of modulus functions, ¢ = (q,) be a
bounded sequence of positive real numbers, p = (u,) be a sequence of positive real

(2.2)

am/

u,,A(:Y)’y:EZ,, 21y zn1H>]qy < e

numbers and 0 = (v,) be a lacunary sequence such that limsup, @, < oo. Then
[32707f)A(’Y)7M7p7Q7‘A7 ||7 SRR ||] - [:Ra fa A(’Y)ulﬁ)pﬂ]aﬂa ||7 SR ||]
Proof. Let = (z,) € [R,0,§, A% 1u,p,q, A, ||-,...,-||]. Then for every e > 0 there

exists ip such that for every i > i

23 A= S nfe[i(

v vel;

,u,,Aﬁ)a:V —L,z,... ,zn_luﬂqy} < €.

Then, there is some positive constant N such that
(2.4) A; <N, foralli.
Now, limsup, @, < co. Then, there exists some positive number K such that
(2.5) Q. <K, forallr>1.
Therefore, for v,_y <n < v, and by (2.3), (2.4) and (2.5), we have
; > Dol Spl S no

ny=1 Vr—1 p=1

1
:P (Zpuyu+zpuyu+"'+zpuyu+ Z DvYut

Vr—1 vel vels I/GIZ‘O VEIi0+1
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~--+Zpyyy>

I/EIT
1
=p (AHy + AgHy + -+ Ay Hyg + Ajg 1 Hiyp o + - + A H,)
<o (Hi+ Hy oo+ Hig) + 55— (Higt1 + Higa + -+ + Hy)
Vr—1 Vr—1
N
€
+ P (PViOJrl - PViO + PV10+2 - PVi0+1 et PVT- - PVT—I)
NPViO €<PVT - Pyio)
PVr—l PV'I‘—I

NPy
P Y

Vr—1

— 00 as r — 00,

r—1

] w
where y, = a,, {f,,( /LVA(V)J:Z, —L,z1,..., znlu)] . Now, P,
then we have x € [R, f,AD u,p,q, A, |-, ...,-||]. This completes the proof. O

Corollary 2.1. Let (p,) be sequence of positive numbers. If 1 < liminf, @, <
limsup, @, < co. Then

[:R>97f>A(:Y)7,uap7 Q>‘A7 H7 ) H] = [:R7f7A(:Y)7:uap7Q7‘A7 H7 sy m

Theorem 2.4. The following inclusions are true.
(2) If p, <1 for all v € N, then

[69T7f7A('~Y)7/L7Q7‘A7 ”77”] C [:R797f7A(:Y)7:u’7p7Q7‘A7 H77|H7
with [Cy, , §, Ay, q, A, |-, . .., -] =limz = [R,§,0, AP u,p,q, A, ||, ..., ||| - limz =
L.
(17) If p, > 1 for allv € N and IZ—: be upper bounded. Then
[:R7 f797A(&)7:uvpaQ7‘A7 ||a e 7|H - [egrafa A(’?),M,Q,A, ||7 : '7'”]7
with [:Ra f?97A(i/)7,uap7Q7'Aa H7 BRI H]—hmx = [earafa Aw)?ﬂa‘]a"qa H7 BRI H]—hmx =
L.

Proof. (i) Let p, < 1 for all v € N, then H, < h, for all » € N. So, there exists a
constant M; such that 0 < M; < IZ—: < 1 for all r € N. Let z = (z,) be a sequence

which converges to the limit L in [Cq,,f, AD u, ¢, A, |-, ..., -||]. Then for € > 0 we get
1 ~ qv
F Zpl/[am/ fu( /’LZ/A(’V)'IV _L7 Zla'--azn—lH>:|

r VEIT

5 a1

T vel,

<

~ qv
Mo MVA(V)L, —L,z,. .., zn_lu)} )
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Now, we get the desired result by taking the limit as r — oo.
() Tt is easy so we omit it. O

Theorem 2.5. Suppose f and § be two sequences of modulus functions. Then the
following z’nclusz’ons hold:

(Z) [IR f, 0 A g 7,u p>q7‘A ” ||] C [fR,fOf/,Q,AW),JLL,p,q,A, ||77H]7

(it)  [R.§,6,A0), u,p,q, A, || 0 [RFL0,AD g, Al C
Rof+7.0,A0) i, p. g, A, I - II]-
Proof. Suppose z = (z,) € [R,§,0, A9 . p,q, A, ||-,...,||]. For given € > 0, choose

pE (0 1) such that f,(t) < € for all 0 < ¢ < p. Then we have

gpy[any{hof ( ANz, — L, zl,...,zanﬂqq
:; > Py [anu l:fu 0 fl(

T quv
yelr[f{( )} <p

2a])]]
o > Py [any {fu 0 fL(

o )]
)]

<(e)” 4 max {1, <2fyp(1 )} 7 Z; Py [am,[ ( ANz, — Loz ,zn_lHﬂqy}.

MVA(:’)%/ —L,z,...,

o ANz, —L. 21,201

MVA(:Y)'IV - Lazla ceey

,ul,A(:Y)m,,—Lzl,...,zn,l

Thus, we get * = (2,) € [R,fof,0,AD up,q, A | ..., ||]. This completes the
proof.

(ii) Let

xr = (xl/) € [R7 f797 A(:Y)alu’ap7 q7‘A7 ”) ER) H] N [Ru f,797 A(ﬁ)muup?(za‘Aa ||7 R ||]

Then, we have

qv
Zpulianu[fzx“f'f( @ I/_vala"'azn—l‘)] :|
7’1/6[
<C’7 Z]%[%w{fu( [1'1/ ( ) V_Lazla"' 7Zn—1H> qu}
7" el J
—|—C’ Zpl,[am,{f < APz, — L 21,...,zn_1‘>rq
TVEI

—0 as r— 0.

Therefore, (x,) € [R,§+§,0,A9 u,p,q, A, |- ...,|]]. This completes the proof. [
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3. STATISTICAL CONVERGENCE

The concept of statistical convergence was introduced independently by Fast [9] and
Steinhaus [28]. Statistical convergence has been further studied by Connor [8], Fridy
([11], [12]), Miller [18], Balcerzak et al. [2], Y. Q. Cao and Xiaofei Qu [7] and others.

In this section, we introduce some inclusion relation between Sig ;o A p.g.a|-...ll

and [:Ra f?ea Aﬁ)?“apa(bﬂ? H7 ceey H]

Definition 3.1. A sequence z = (z,) is said to be Sig;9 A
to L if for every € > 0,

Jps@s e[ COTIVETENLE

1 -
gl e b n (A, — Lozl 2 G =0

In this case, we write Sig ;9 A%) —limz = Lorx, = LSig;0a%

7/"/7p7Q»‘A7||'7~"7'|” 7U7p7Q7‘A7H'7”'7'|” :

Theorem 3.1. Let f = (§,) be a sequence of modulus functions and 0 < inf, ¢, < q, <

Supy q, = D < Q. Then [IR, f, 6, A(ﬁ), o, P, q,.A, H, ey H] C S[R,fﬁ,A(W,u,p,q,A,H-,..‘,-H]'
Proof. Consider z = (x,) € [R,f,0, AT u,p,q,A,|-,...,-||] and given ¢ > 0. Then
for each z1,...,2,_1, we have
1 (~) qv
F Z Pv |:a7w |:fV< ,LLVA 7 Ty — La 21y 7Zn—1H>:| :|
T vel,
:i Z DPula f ( ol A(:}’)m — L 21 z 1H)— ]
H ) v |Any [Tv v v 3 Rly e e ey An—
T veln |lu AMNz,—L 21, 2n—1]|>€ -
1 - 74qv
+ — Z Dy {am, [fy( MVA(7)$V —L,z1,..., 201 D }
T vel||p AM xy, —Ly 21,y 2n 1| <€ -
1 ) o
ZF Z Pv | Ony fV( ,LLVA(’Y):EV - L, Zlyeee Zn—lH)
T vel||p ANz, —L,z1,.y2n 1] >€ -
1
> > [l(e)"
HT I/GIT
1 : inf g, D
2o Z min { [f, (€)™, [f, ()] " }

Y

1 ~
>Ry € Lol ADz, = Lz, ) 2 €}

where R = min { [}, (€)J"% [f, ()]} . Thus, (2,) € Sig 6.4 upgut ol O

Theorem 3.2. Let f = (f,) be a bounded sequence of modulus functions and ¢ = (q,) be
a bounded sequence of positive real numbers. If 0 < inf,q, < ¢q, <sup,q, =D < o0,
then S[fR,fﬂ,A(’Y) 1l C [:Rv fv 97 A('Y)v W, P, qa'Av ||7 ) ||]

7u7p1Q7‘A7H'7'--7
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a”lel

u,,Aﬁ)gc,, —L,z,..., zan)ru}

/LVA(:Y)ZEV —L,z,... ,zn_lHﬂqu}

1

1 ~ quv
ES A CT
i,

vel,
T Ve]"‘vIIMVA(;y>$V_L7ZI7"'7Zn—1”ZE
VGI’I‘:”IU'VA(&)'%V7L7Z17""Z7L—1||<6
<
1

Proof. Suppose = (2,) € Six;0.A® upg-...J] and € > 0 be given. Since f is
bounded, then there exists an integer J such that f(z) < J for all z > 0, then we have

1

=77 Z bv fzz(‘
+ i Z DPv |:am/ |:f1/ (‘
H,
Z maX{Jinfq”,JD}
T vel||p AM zy —L,21,. 20 1] >€
o > (o)
T vel lu AMNz,—L,21,... 2n—1]| <€

. 1 -
SmaX{Jquyu JD} F‘{V € ]'r :pu(H:uVA(V)SUV - La Rly o 7Zn—1||) Z 6}‘

+max {[f, ()™, [f, ()]}
Thus, (z,) € [R,f,0, AP u,p,q,A,],...,-||]. This completes the proof. O
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