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RIESZ LACUNARY SEQUENCE SPACES OF FRACTIONAL
DIFFERENCE OPERATOR

KULDIP RAJ1, KAVITA SAINI1, AND NEERU SAWHNEY2

Abstract. In this paper, we intend to make new approach to introduce and study
some fractional difference sequence spaces by Riesz mean associated with infinite
matrix and a sequence of modulus functions over n -normed spaces. Various algebraic
and topological properties of these newly formed sequence spaces have been explored
and some inclusion relations concerning these spaces are also establish. Finally, we
make an effort to study the statistical convergence through fractional difference
operator.

1. Introduction and Preliminaries

Baliarsingh and Dutta [1] introduced fractional difference operators ∆γ̃ , ∆(γ̃), ∆−γ̃ ,
∆(−γ̃) and discussed some topological results among these operators. Meng and Mei
[17] introduced binomial fractional difference sequence spaces by clubbing binomial
matrix and fractional difference operator. Recently, Baliarsingh et al. [4] studied
approximation theorems and statistical convergence in fractional difference sequence
spaces. Also, double difference fractional order sequence spaces has been introduced
by Baliarsingh in [5]. In [23] Nayak et al. introduced some weighted mean fractional
difference sequence spaces. Kirişci and Kadak [15] proposed almost convergent frac-
tional order difference sequence spaces. The reader can refer to the textbooks Başar
[6] and Mursaleen [20] for relevant terminology and required details on the domain
of triangles, sequence spaces and related topics. By N, R and C we denote the sets
of natural, real and complex numbers respectively. Let w be the space of all real or
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complex sequences. For a proper fraction γ̃, defined the fractional difference operators
∆γ̃ : w → w, ∆(γ̃) : w → w and their inverses are as follows:

∆γ̃(xν) =
∞∑

i=0
(−1)i Γ(γ̃ + 1)

i!Γ(γ̃ + 1 − i)xν+i,(1.1)

∆(γ̃)(xν) =
∞∑

i=0
(−1)i Γ(γ̃ + 1)

i!Γ(γ̃ + 1 − i)xν−i,(1.2)

∆−γ̃(xν) =
∞∑

i=0
(−1)i Γ(1 − γ̃)

i!Γ(1 − γ̃ − i)xν+i,(1.3)

∆(−γ̃)(xν) =
∞∑

i=0
(−1)i Γ(1 − γ̃)

i!Γ(1 − γ̃ − i)xν−i.(1.4)

We suppose that the series defined in (1.1)–(1.4) are convergent. For γ̃ = 1
2 , we have

• ∆ 1
2xν = xν − 1

2xν+1 − 1
8xν+2 − 1

16xν+3 − 5
128xν+4 − 7

256xν+5 − · · · ;
• ∆− 1

2xν = xν + 1
2xν+1 + 3

8xν+2 + 5
16xν+3 + 35

128xν+4 + 63
256xν+5 + · · · ;

• ∆( 1
2 )xν = xν − 1

2xν−1 − 1
8xν−2 − 1

16xν−3 − 5
128xν−4 − 7

256xν−5 − · · · ;
• ∆(− 1

2 )xν = xν + 1
2xν−1 + 3

8xν−2 + 5
16xν−3 + 35

128xν−4 + 63
256xν−5 + · · ·

For more details about fractional difference operator (see [3]). By Γ(m), we denote
the Gamma function of a real number m and m /∈ {0,−1,−2,−3, . . . }. Now, by the
definition it will be expressed as associate improper integral, i.e.,

Γ(m) =
∫ ∞

0
e−ttm−1dt.(1.5)

It is clear from (1.5) if m ∈ N, the set of nonnegative integers, then Γ(m+ 1) = m!.
For this reason, Gamma function is considered to be a generalization of elementary
factorial function. Currently, we tend to state some properties of Gamma function
that are as follows:

(i) if m ∈ N, then we have Γ(m+ 1) = m!;
(ii) if m ∈ R \ {0,−1,−2,−3, . . . }, then we have Γ(m+ 1) = mΓ(m);
(iii) for particular cases, we have Γ(1) = Γ(2) = 1, Γ(3) = 2!, Γ(4) = 3!, . . .
Let U and V be two sequence spaces and A = (anν) be an infinite matrix of real or

complex numbers. Then we say that A defines a matrix transformation from U into
V if for every sequence x = (xν) ∈ U , the sequence Ax = {An(x)}, the A-transform
of x is in V, where

An(x) =
∑

ν

anνxν , n ∈ N.

The idea of n-normed spaces was introduced by Misiak [19]. Let X be a linear space
over the field R of reals of dimension d, where d ≥ n ≥ 2 and n ∈ N. A real valued
function ||·, . . . , ·|| on Xn satisfying the following four conditions:

(i) ||ϑ1, ϑ2, . . . , ϑn|| = 0 if and only if ϑ1, ϑ2, . . . , ϑn are linearly dependent in X;
(ii) ||ϑ1, ϑ2, . . . , ϑn|| is invariant under permutation;
(iii) ||βϑ1, ϑ2, . . . , ϑn|| = |β| ||ϑ1, ϑ2, . . . , ϑn|| for any β ∈ R;
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(iv) ||ϑ + ϑ′, ϑ2, . . . , ϑn|| ≤ ||ϑ, ϑ2, . . . , ϑn|| + ||ϑ′, ϑ2, . . . , ϑn|| is called an n-norm
on X and the pair (X, ||·, . . . , ·||) is called a n-normed space over the field R. For
more definition and results on n-normed spaces see [13,14,22]. A sequence (xν) in a
n-normed space (X, ∥·, . . . , ·∥) is said to converge to some L ∈ X if

lim
ν→∞

∥(xν − L, z1, . . . , zn−1)∥ = 0, for every z1, . . . , zn−1 ∈ X.

A sequence (xν) in a n-normed space (X, ∥·, . . . , ·∥) is said to be Cauchy with respect
to the n-norm if

lim
ν,p→∞

∥(xν − xp, z1, . . . , zn−1)∥ = 0, for every z1, . . . , zn−1 ∈ X.

In a n-normed space (X, ∥·, . . . , ·∥), a sequence (xν) is said to be bounded if for a
positive constant M, ∥(xν , z1, . . . , zn−1)∥ ≤ M for all z1, . . . , zn−1 ∈ X.

Let (pv) be a sequence of positive real numbers and Pn = p1 + p2 + · · · + pn for all
n ∈ N. Thus, the Riesz transformation of x = (xν) is defined as

(1.6) tn = 1
Pn

n∑
ν=1

pνxν .

If the sequence (tn) contains a finite limit L, then the sequence (xν) is said to be Riesz
convergent to L. The set of all Riesz convergent sequence is denoted by (R,Pn). Let
us note that if Pn → ∞, as n → ∞. Then Riesz mean is regular. If pν = 1 for every
natural number ν in (1.6), then Riesz mean reduces to Cesàro mean of order one.

An increasing non-negative integer sequence θ = (νr) with ν0 = 0 and νr−νr−1 → ∞
as r → ∞ is known as lacunary sequence. The intervals determined by θ will be
denoted by Ir = (νr−1, νr]. We write hr = νr − νr−1 and qr denotes the ratio νr

νr−1
. The

space of lacunary strongly convergence was defined by Freedman et al. [10] as follows:

Nθ =
{
x = (xν) : lim

r→∞

1
hr

∑
ν∈Ir

|xν − L| = 0 for some L
}
.

The space Nθ is a BK-space with the norm

∥x∥ = sup
(

1
hr

∑
ν∈Ir

|xν |
)
.

Let θ = (νr) be a lacunary sequence and (pν) be a sequence of positive real numbers
such that Hr = ∑

ν∈Ir
pν , Pνr = ∑

ν∈(0,νr] pν , Pνr−1 = ∑
ν∈(0,νr−1] pν , Qr = Pνr

Pνr−1
, P0 = 0.

Clearly, Hr = Pνr − Pνr−1 and the intervals determine by θ and (pν) are denoted by
I ′

r = (Pνr−1 , Pνr ]. If we take pν = 1 for all ν ∈ N, then Hr, Pνr , Pνr−1 , Qr and I ′
r reduce

to hr, νr, νr−1, qr and Ir, respectively.
A function ψ : X → R is termed as paranorm, where X be a linear metric space,

if following conditions are satisfied
(i) ψ(x) ≥ 0 for all x ∈ X;
(ii) ψ(−x) = ψ(x) for all x ∈ X;
(iii) ψ(x+ y) ≤ ψ(x) + ψ(y) for all x, y ∈ X;
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(iv) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence
of vectors with ψ(xn − x) → 0 as n → ∞, then ψ(λnxn − λx) → 0 as n → ∞.

A function f : [0,∞) → [0,∞) is said to be modulus function if
(i) f(υ) = 0 if and only if υ = 0;
(ii) f(υ1 + υ2) ≤ f(υ1) + f(υ2) for all υ1, υ2;
(iii) f is increasing;
(iv) f is continuous from the right at 0.
The modulus function may be bounded or unbounded. Later, modulus function

has been discussed in [21,25–27,29] and references therein.

Lemma 1.1. Consider f = (fν) be a sequence of modulus functions and 0 < ρ < 1.
Then for each x > ρ, we have

fν(x) ≤ 2fν(1)(x)
ρ

.

For a proper fraction γ̃, let f = (fν) be a sequence of modulus functions, q = (qν)
be a bounded sequence of strictly positive real numbers, µ = (µν) be a sequence of
strictly positive real numbers and θ be a lacunary sequence. In this paper we define
the following sequence spaces as follows:

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0

=
{
x = (xν) ∈ w : lim

r→∞

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν
]

= 0
}
,

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]

=
{
x = (xν) ∈ w : lim

r→∞

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

= 0,

for some L > 0
}

and

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]∞

=
{
x = (xν) ∈ w : sup

r

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν
]
< ∞

}
.

If the sequence x = (xν) is convergent to the limit L in

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]

we denote it by [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] − lim x = L.
Suppose f(x) = x. Then above spaces reduces to [R, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0,

[R, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] and [R, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]∞.
By taking q = (qν) = 1 for all ν ∈ N, then we get the spaces [R, θ, f,∆(γ̃), µ, p,A,

∥·, . . . , ·∥]0, [R, θ, f,∆(γ̃), µ, p,A, ∥·, . . . , ·∥] and [R, θ, f,∆(γ̃), µ, p,A, ∥·, . . . , ·∥]∞.
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Suppose pν = 1 for all ν ∈ N, then we get the spaces as follows:

[Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]0

=
{
x = (xν) ∈ w : lim

r→∞

1
hr

∑
ν∈Ir

anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν

= 0
}
,

[Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]

=
{
x = (xν) ∈ w : lim

r→∞

1
hr

∑
ν∈Ir

anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν

= 0
}

and

[Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]∞

=
{
x = (xν) ∈ w : sup

r

1
hr

∑
ν∈Ir

anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν

< ∞
}
.

Suppose (pν) be a sequence of positive numbers and Pn = p1 + p2 + ...+ pn. Now, we
define the sequence spaces as follows:

[R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0

=
{
x = (xν) ∈ w : lim

n→∞

1
Pn

n∑
ν=1

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν
]

= 0
}
,

[R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]

=
{
x = (xν) ∈ w : lim

n→∞

1
Pn

n∑
ν=1

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

= 0
}

and

[R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]∞

=
{
x = (xν) ∈ w : sup

n

1
Pn

n∑
ν=1

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν
]
< ∞

}
.

If 0 < qν ≤ sup qν = D, C = max{1, 2D−1}. Then

(1.7) |cν + dν |qν ≤ C(|cν |qν + |dν |qν ),

for every natural number ν and cν , dν ∈ R.
The main purpose of this paper is to introduce and study some lacunary convergent

sequence spaces defined by Riesz mean via modulus functions over n−normed spaces.
We shall make an effort to study some interesting algebraic and topological properties
of concerning sequence spaces. Also, we examine some interrelations between these
sequence spaces.
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2. Main Results

Theorem 2.1. Suppose f = (fν) be a sequence of modulus functions, ∆(γ̃) be a
fractional difference operator, µ = (µν) be a sequence of positive real numbers and
q = (qν) be a bounded sequence of positive real numbers. Then the sequence spaces
[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0, [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] and [R, θ, f,∆(γ̃), µ,
p, q,A, ∥·, . . . , ·∥]∞ are linear spaces over the field R of real numbers.

Proof. Consider x = (xν), y = (yν) ∈ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 and α, β ∈ R.
Since f is additive and by using inequality (1.7), we have

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)(αxν + βyν), z1, . . . , zn−1

∥∥∥)]qν
]}

≤ 1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(
|α|
∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν
]

+ 1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(
|β|
∥∥∥µν∆(γ̃)yν , z1, · · · , zn−1

∥∥∥)]qν
]

≤C 1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, . . . , zn−1

∥∥∥)]qν
]

+ C
1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)yν , z1, . . . , zn−1

∥∥∥)]qν
]

→0 as r → ∞.

Hence, [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 is a linear space. Similarly, we can prove
others. □

Theorem 2.2. Let f = (fν) be a sequence of modulus functions and q = (qν)
be a bounded sequence of strictly positive real numbers. Then the sequence space
[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 is a paranormed space with respect to the paranorm

ψ(x) = sup
r

(
1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, · · · , zn−1

∥∥∥)]qν
]) 1

M

,

where M = max{1, supν qν < ∞}.

Proof. Consider x = (xν), y = (yν) ∈ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0. Clearly,
ψ(x) ≥ 0 and ψ(0) = 0. Now, by using Minkowski’s inequality, we get(

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)(xν + yν), z1, · · · , zn−1

∥∥∥)]qν
]) 1

M

≤
(

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν , z1, · · · , zn−1

∥∥∥)]qν
]) 1

M
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+
(

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)yν , z1, · · · , zn−1

∥∥∥)]qν
]) 1

M

.

Hence, ψ(x+ y) ≤ ψ(x) + ψ(y).
Finally, we prove that the scalar multiplication is continuous. Let γ be any complex

number. Then

ψ(γx) = sup
r

(
1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)γxν , z1, · · · , zn−1

∥∥∥)]qν
]) 1

M

≤ K
D
M
γ ψ(x),

where Kγ is a positive integer such that γ ≤ Kγ. Now, let γ → 0 for any fixed x with
ψ(x) ̸= 0. So, by using definition of f for |γ| < 1, we have

(2.1) 1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)γxν , z1, . . . , zn−1

∥∥∥)]qν

< ϵ, for r > r0(ϵ).

Since f is continuous and taking γ small enough, for 1 ≤ r ≤ r0, we have

(2.2) 1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)γxν , z1, . . . , zn−1

∥∥∥)]qν

< ϵ.

Now, by combining (2.1) and (2.2) implies that ψ(γx) → 0 as γ → 0. Thus, the space
[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]0 is a paranormed space with respect to the paranorm
ψ(·). □

Theorem 2.3. Suppose f = (fν) be a sequence of modulus functions, q = (qν) be a
bounded sequence of positive real numbers, µ = (µν) be a sequence of positive real
numbers and θ = (νr) be a lacunary sequence such that lim supr Qr < ∞. Then
[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊆ [R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Proof. Let x = (xν) ∈ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. Then for every ϵ > 0 there
exists i0 such that for every i > i0

(2.3) Ai = 1
Hi

∑
ν∈Ii

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]
< ϵ.

Then, there is some positive constant N such that
(2.4) Ai ≤ N, for all i.
Now, lim supr Qr < ∞. Then, there exists some positive number K such that
(2.5) Qr ≤ K, for all r ≥ 1.
Therefore, for νr−1 < n ≤ νr and by (2.3), (2.4) and (2.5), we have

1
Pn

n∑
ν=1

pνyν ≤ 1
Pνr−1

νr∑
ν=1

pνyν

= 1
Pνr−1

( ∑
ν∈I1

pνyν +
∑
ν∈I2

pνyν + · · · +
∑

ν∈Ii0

pνyν +
∑

ν∈Ii0+1

pνyν+
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· · · +
∑
ν∈Ir

pνyν

)

= 1
Pνr−1

(A1H1 + A2H2 + · · · + Ai0Hi0 + Ai0+1Hi0+1 + · · · + ArHr)

≤ N

Pνr−1

(H1 +H2 + · · · +Hi0) + ϵ

Pνr−1

(Hi0+1 +Hi0+2 + · · · +Hr)

= N

Pνr−1

(
Pν1 − Pν0 + Pν2 − Pν1 + · · · + Pνi0

− Pνi0−1

)
+ ϵ

Pνr−1

(
Pνi0+1 − Pνi0

+ Pνi0+2 − Pνi0+1 · · · + Pνr − Pνr−1

)
=
NPνi0

Pνr−1

+
ϵ(Pνr − Pνi0

)
Pνr−1

≤
NPνi0

Pνr−1

+ ϵK,

where yν = anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν

. Now, Pνr−1 → ∞ as r → ∞,

then we have x ∈ [R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the proof. □

Corollary 2.1. Let (pν) be sequence of positive numbers. If 1 < lim infr Qr ≤
lim supr Qr < ∞. Then

[R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] = [R, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Theorem 2.4. The following inclusions are true.
(i) If pν < 1 for all ν ∈ N, then

[Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥] ⊂ [R, θ, f,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥],
with [Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]− lim x = [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]− lim x =
L.

(ii) If pν > 1 for all ν ∈ N and Hr

hr
be upper bounded. Then

[R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂ [Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥],
with [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]−lim x = [Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]−lim x =
L.

Proof. (i) Let pν < 1 for all ν ∈ N, then Hr < hr for all r ∈ N. So, there exists a
constant M1 such that 0 < M1 ≤ Hr

hr
< 1 for all r ∈ N. Let x = (xν) be a sequence

which converges to the limit L in [Cθr , f,∆(γ̃), µ, q,A, ∥·, . . . , ·∥]. Then for ϵ > 0 we get
1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

<
1

M1hr

∑
ν∈Ir

anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν

.
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Now, we get the desired result by taking the limit as r → ∞.
(ii) It is easy so we omit it. □

Theorem 2.5. Suppose f and f′ be two sequences of modulus functions. Then the
following inclusions hold:

(i) [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂ [R, f ◦ f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥];
(ii) [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ∩ [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂

R, f + f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Proof. Suppose x = (xν) ∈ [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. For given ϵ > 0, choose
ρ ∈ (0, 1) such that fν(t) < ϵ for all 0 < t < ρ. Then we have

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν ◦ f′ν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

= 1
Hr

∑
ν∈Ir,

[
f′ν

(∥∥∥µν∆(γ̃)xν−L,z1,...,zn−1

∥∥∥)]qν

<ρ

pν

[
anν

[
fν ◦ f′ν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . ,

zn−1

∥∥∥)]qν
]

+ 1
Hr

∑
ν∈Ir,

[
f′ν

(∥∥∥µν∆(γ̃)xν−L,z1,...,zn−1

∥∥∥)]qν

≥ρ

pν

[
anν

[
fν ◦ f′ν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . ,

zn−1

∥∥∥)]qν
]

≤(ϵ)D + max
{

1,
(

2fν(1)
ρ

)}
1
Hr

∑
ν∈Ir

pν

[
anν

[
f′ν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]
.

Thus, we get x = (xν) ∈ [R, f ◦ f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the
proof.

(ii) Let
x = (xν) ∈ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ∩ [R, f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Then, we have
1
Hr

∑
ν∈Ir

pν

[
anν

[
fν + f′ν

(∥∥∥µν∆(γ̃)xν − L, z1, · · · , zn−1

∥∥∥)]qν
]

≤C 1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, · · · , zn−1

∥∥∥)]qν
]

+ C
1
Hr

∑
ν∈Ir

pν

[
anν

[
f′ν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

→0 as r → ∞.

Therefore, (xν) ∈ [R, f + f′, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the proof. □
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3. Statistical Convergence

The concept of statistical convergence was introduced independently by Fast [9] and
Steinhaus [28]. Statistical convergence has been further studied by Connor [8], Fridy
([11], [12]), Miller [18], Balcerzak et al. [2], Y. Q. Cao and Xiaofei Qu [7] and others.
In this section, we introduce some inclusion relation between S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]
and [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].

Definition 3.1. A sequence x = (xν) is said to be S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]-convergent
to L if for every ϵ > 0,

1
Hr

∣∣∣{ν ∈ Ir : pν(∥µν∆(γ̃)xν − L, z1, . . . , zn−1∥) ≥ ϵ}
∣∣∣ = 0.

In this case, we write S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]−lim x = L or xν → LS[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥].

Theorem 3.1. Let f = (fν) be a sequence of modulus functions and 0 < infν qν ≤ qν ≤
supν qν = D < ∞. Then [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] ⊂ S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥].

Proof. Consider x = (xν) ∈ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥] and given ϵ > 0. Then
for each z1, . . . , zn−1, we have

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

= 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

+ 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥<ϵ

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

≥ 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

≥ 1
Hr

∑
ν∈Ir

[fν(ϵ)]qν

≥ 1
Hr

∑
ν∈Ir

min
{
[fν(ϵ)]inf qν , [fν(ϵ)]D

}
≥R 1

Hr

∣∣∣{ν ∈ Ir : pν(∥µν∆(γ̃)xν − L, z1, . . . , zn−1∥) ≥ ϵ}
∣∣∣,

where R = min
{
[fν(ϵ)]inf qν , [fν(ϵ)]D

}
. Thus, (xν) ∈ S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥]. □

Theorem 3.2. Let f = (fν) be a bounded sequence of modulus functions and q = (qν) be
a bounded sequence of positive real numbers. If 0 < infν qν ≤ qν ≤ supν qν = D < ∞,
then S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥] ⊂ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥].
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Proof. Suppose x = (xν) ∈ S[R,f,θ,∆(γ̃),µ,p,q,A,∥·,...,·∥] and ϵ > 0 be given. Since f is
bounded, then there exists an integer J such that f(x) < J for all x > 0, then we have

1
Hr

∑
ν∈Ir

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

= 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

+ 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥<ϵ

pν

[
anν

[
fν

(∥∥∥µν∆(γ̃)xν − L, z1, . . . , zn−1

∥∥∥)]qν
]

≤ 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥≥ϵ

max
{
J inf qν , JD

}

+ 1
Hr

∑
ν∈Ir,∥µν∆(γ̃)xν−L,z1,...,zn−1∥<ϵ

[f(ϵ)]qν

≤ max
{
J inf qν , JD

} 1
Hr

∣∣∣{ν ∈ Ir : pν(∥µν∆(γ̃)xν − L, z1, . . . , zn−1∥) ≥ ϵ}
∣∣∣

+ max
{
[fν(ϵ)]inf qν , [fν(ϵ)]D

}
.

Thus, (xν) ∈ [R, f, θ,∆(γ̃), µ, p, q,A, ∥·, . . . , ·∥]. This completes the proof. □
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