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APPLICATION OF JACOBI POLYNOMIAL AND
MULTIVARIABLE ALEPH-FUNCTION IN HEAT CONDUCTION

IN NON-HOMOGENEOUS MOVING RECTANGULAR
PARALLELEPIPED

DINESH KUMAR1 AND FRÉDÉRIC AYANT2,3

Abstract. The present paper deals with an application of Jacobi polynomial and
multivariable Aleph-function to solve the differential equation of heat conduction in
non-homogeneous moving rectangular parallelepiped. The temperature distribution
in the parallelepiped, moving in a direction of the length (x-axis) between the limits
x = −1 and x = 1 has been considered. The conductivity and the velocity have been
assumed to be variables. We shall see two particular cases and the cases concerning
Aleph-function of two variables and the I-function of two variables.

1. Introduction and Preliminaries

We suppose the parallelepiped has heat conductivity K, density ρ, diffusivity k
and specific heat σ. The partial differential equation satisfied by the temperature
v(x, y, z, t) at any time t in a homogeneous parallelepiped bounded by the planes
y = 0 and y = b, z = 0 and z = c, moves with a constant velocity U in the direction
of its length (x-axis) between the limits x = −1 and x = 1, on the lines of Carslaw
and Jaeger [4, page 155, (1)] is

(1.1) k

[
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

]
− U ∂v

∂x
− ∂v

∂t
= 0,

where k = K
ρσ
. If we consider a non-homogeneous parallelepiped of variable conduc-

tivity k′ (1− x2) and the velocity k0 [(α− β) + (α + β)x] , where k′, k0, α and β are

Key words and phrases. Jacobi polynomial, heat conduction, Aleph-function of several variables,
aleph-function of two variables, I-function of two variables.
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440 D. KUMAR AND F. Y. AYANT

constants, the partial differential equation (1.1) reduces to

(1.2) ∂v

∂t
= k0

[(
1− x2

) ∂2v

∂x2 + ((β − α)− (α + β + 2)x) ∂v
∂x

]
+ k

[
∂2v

∂y2 + ∂2v

∂z2

]
= 0,

where k0 = k′

ρσ
, Re (α) > −1, Re (β) > −1.

As physical example we can consider the temperature distribution of the moving
mercury parallelepiped between the planes x = −1, x = 1, y = 0 and y = b, z = 0
and z = c connected by two reservoirs of the mercury at the two ends. The variable
flow in the mercury at the end x = −1 with a certain speed. The initial temperature
distribution in the parallelepiped of mercury can be taken to be f (x, y, z). The
surfaces y = 0 and y = b, z = 0 and z = c of the parallelepiped are supposed to be
insulated. The ends x = −1 and x = 1 of the mercury parallelepiped should also be
insulated as the conductivity vanishes there.

2. Solution of the Problem

By assuming the solution of the partial differential equation (1.2) as v (x, y, z, t) =
X (x)Y (y)Z (z)T (t), the solution of the partial differential equation (1.2) reduces
to

1
T

dT

dt
= k0

X

[(
1− x2

) d2X

dx2 + (−α + β − (α + β + 2)x) dX
dx

]
+ k

Y

d2Y

dy2 + k

Z

d2Z

dz2 .

Now, taking
k0

X

[
(1− x2)d

2X

dx2 + (−α + β − (α + β + 2)x) dX
dx

]
=− k0n (n+ α + β + 1) ,

k

Y

d2Y

dy2 =− kλ2,

and k
Z
d2Z
dz2 = −kυ2, λ, υ being constants, n being positive integer, we obtain the

following equations(
1− x2

) d2X

dx2 + (−α + β − (α + β + 2)x) dX
dx

+ n (n+ α + β + 1)X =0,(2.1)

d2Y

dy2 + λ2y =0,(2.2)

d2Z

dz2 + υ2z =0,(2.3)

and

(2.4) dT

dt
=
[
−n (n+ α + β + 1)− k

(
λ2 + υ2

)]
T.

The (2.1) is the differential equation of Jacobi polynomials and its solution is
X = P (α,β)

n (x).



APPLICATION OF JACOBI POLYNOMIAL AND MULTIVARIABLE ALEPH-FUNCTION 441

The solution of (2.2), (2.3) and (2.4) are

Y =A cosλy +B sin λy,
Z =C cos υz +D sin υz

and
T = E exp

[
−
(
k0 n (n+ α + β + 1) + k

(
λ2 + υ2

))
t
]
,

where A, B, C, D, E are constants.
Hence, the general solution of (1.2), the temperature distribution at any point

M (x, y, z) of the parallelepiped at time t is given by

v (x, y, z, t) = exp
[
−
(
k0 n (n+ α + β + 1) + k

(
λ2 + υ2

))
t
]
P (α,β)
n (x)

× [A cosλy +B sin λy] [C cos υz +D sin υz] ,(2.5)

if no heats flows from the surfaces y = 0 and y = b, z = 0 and z = c,
(
∂v
∂y

)
y=b=0

= 0,(
∂v
∂z

)
z=c=0

= 0 for all x and t. These demand B = 0, D = 0, λ = mπ
b
, υ = lπ

c
, where

m, l = 0, 1, 2, . . . .
Therefore, the solution (2.5) reduces to

v (x, y, z, t) =
∞∑

n,m,l=0
Anml exp

[
−
(
k0 n (n+ α + β + 1) + k

(
λ2 + υ2

))
t
]

× P (α,β)
n (x) cos mπ

b
y cos lπ

c
z.

Here, Re (α) > −1, Re (β) > −1 and Anml are constants. If the initial temperature
distribution in parallelepiped is given by

(2.6)
∞∑

n,m,l=0
AnmlP

(α,β)
n (x) cos mπ

b
y cos lπ

c
z.

Now, multiplying both sides of (2.6) by (1− x)α (1 + x)β P (α,β)
n (x) cos mπ

b
y cos lπ

c
z,

integrating both sides between x = −1 and x = 1, y = 0 and y = b, z = 0 and z = c,
and applying the result [5, Vol. II. Page 285, (5)]∫ 1

−1
(1− x)α (1 + x)β

[
P (α,β)
n (x)

]2
dx = 2α+β+1Γ (α + n+ 1) Γ (β + n+ 1)

n! (α + β + 2n+ 1) Γ (α + β + n+ 1) ,

with Re (α) > −1, Re (β) > −1, we obtain

Amnl =n! (α + β + 2n+ 1) Γ (α + β + n+ 1)
2α+β+1Γ (α + n+ 1) Γ (β + n+ 1)

×
∫ c

0

∫ b

0

∫ 1

−1
(1− x)α (1 + x)β P (α,β)

n (x) cos mπ
b
y cos lπ

c
z f (x, y, z) dx dy dz.



442 D. KUMAR AND F. Y. AYANT

Hence, the temperature distribution in the non-homogeneous moving rectangular
parallelepiped is given by

v (x, y, z, t)

(2.7)

= 1
2α+β−1bc

∞∑
n,m,l=0

n! (α + β + 2n+ 1) Γ (α + β + n+ 1)
2α+β+1Γ (α + n+ 1) Γ (β + n+ 1)

× exp
[
−
(
k0 n (n+ α + β + 1) + kπ2

(
m2

b2 + l2

c2

))
t

]
P (α,β)
n (x) cos mπ

b
y cos lπ

c
z

×
∫ c

0

∫ b

0

∫ 1

−1
(1− x)α (1 + x)β P (α,β)

n (x) cos mπ
b
y cos lπ

c
z f (x, y, z) dx dy dz,

with Re (α) > −1, Re (β) > −1.

Remark 2.1. Prasad and Maurya [10] have given application of Jacobi polynomial and
multivariable H-function in heat conduction in non-homogeneous moving rectangular
parallelepiped; Simões et al. [9] have studied Green’s functions for heat conduction
for unbounded and bounded rectangular spaces.

3. Multivariable Aleph-Function

For an illustration, if we take f (x, y, z) = f1 (x) f2 (y) f3 (z), f2 (y) = e−µy, f3 (z) =
e−δz and f1 (x) to be the most general special function in the form of multivariable
Aleph-function.

The multivariable Aleph-function is a generalization of the multivariable H-function
defined by Srivastava and Panda [14,15]. The multivariable Aleph-function is defined
by means of the multiple contour integral [3, 7]:
ℵ (z1, . . . , zr)

=ℵ0, n:m1,n1,...,mr,nr

pi,qi,τi;R:p
i(1) , qi(1) ,τi(1) ;R(1);...;p

i(r) ,qi(r) ;τ
i(r) ;R(r)


z1
...
zr

∣∣∣∣∣∣
[(
aj;α(1)

j , . . . , α
(r)
j

)
1,n

]
,

. . . ,[
τi
(
aji;α(1)

ji , . . . , α
(r)
ji

)
n+1,pi

]
:
[(
c

(1)
j

)
,
(
γ

(1)
j

)
1,n1

]
,
[
τi(1)

(
c

(1)
ji(1) , γ

(1)
ji(1)

)
n1+1,p(1)

i

]
;[

τi
(
bji; β(1)

ji , · · · , β
(r)
ji

)
m+1,qi

]
:
[(
d

(1)
j

)
,
(
δ

(1)
j

)
1,m1

]
,
[
τi(1)

(
d

(1)
ji(1) , δ

(1)
ji(1)

)
m1+1,q(1)

i

]
;

. . . ;
[(
c

(r)
j

)
,
(
γ

(r)
j

)
1,nr

]
,
[
τi(r)

(
c

(r)
ji(r) , γ

(r)
ji(r)

)
nr+1,p(r)

i

]
. . . ;

[(
d

(r)
j

)
,
(
δ

(r)
j

)
1,mr

]
,
[
τi(r)

(
d

(r)
ji(r) , δ

(r)
ji(r)

)
mr+1,q(r)

i

]


= 1
(2πω)r

∫
L1
· · ·

∫
Lr

ψ (s1, . . . , sr)
r∏

k=1
θk (sk) zsk

k ds1 · · · dsr,

(3.1)
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with ω =
√
−1,

ψ (s1, . . . , sr) =
∏n
j=1 Γ

(
1− aj +∑r

k=1 α
(k)
j sk

)
∑R
i=1

[
τi
∏pi
j=n+1 Γ

(
aji −

∑r
k=1 α

(k)
ji sk

)∏qi
j=1 Γ

(
1− bji +∑r

k=1 β
(k)
ji sk

)]
and

θk (sk) =
∏mk
j=1 Γ

(
d

(k)
j − δ

(k)
j sk

)∏nk
j=1 Γ

(
1− c(k)

j + γ
(k)
j sk

)
∑R(k)

i(k)=1

[
τi(k)

∏q
i(k)
j=mk+1 Γ

(
1− d(k)

ji(k) + δ
(k)
ji(k)sk

)∏p
i(k)
j=nk+1 Γ

(
c

(k)
ji(k) − γ(k)

ji(k)sk
)] .

For more details, see Ayant [1]. The condition for absolute convergence of multi-
ple Mellin-Barnes type contour can be obtained by extension of the corresponding
conditions for multivariable H-function given by

| arg zk| <
1
2A

(k)
i π,

where

A
(k)
i =

n∑
j=1

α
(k)
j − τi

pi∑
j=n+1

α
(k)
ji − τi

qi∑
j=1

β
(k)
ji +

nk∑
j=1

γ
(k)
j − τi(k)

p
i(k)∑

j=nk+1
γ

(k)
ji(k)

+
mk∑
j=1

δ
(k)
j − τi(k)

q
i(k)∑

j=mk+1
δ

(k)
ji(k) > 0,(3.2)

with k = 1, . . . , r, i = 1, . . . , R, i(k) = 1, . . . , R(k).
The complex numbers zi are not zero. Throughout this document, we assume the

existence and absolute convergence conditions of the multivariable Aleph-function.
For convenience, we shall use the following notations in this paper.

V =m1, n1; . . . ; mr, nr

W =pi(1) , qi(1) , τi(1) ; R(1); . . . ; pi(r) , qi(r) , τi(r) ; R(r),

A =
{(
aj;α(1)

j , . . . , α
(r)
j

)
1,n

}
,
{
τi
(
aji;α(1)

ji , . . . , α
(r)
ji

)
n+1,pi

}
:
{(
c

(1)
j ; γ(1)

j

)
1,n1

}
,{

τi(1)

(
c

(1)
ji(1) ; γ(1)

ji(1)

)
n1+1,p

i(1)

}
; . . . ;

{(
c

(r)
j ; γ(r)

j

)
1,nr

}
,

{
τi(r)

(
c

(r)
ji(r) ; γ(r)

ji(r)

)
nr+1,p

i(r)

}
,

B =
{
τi(bji; β(1)

ji , . . . , β
(r)
ji )m+1,qi

}
:
{(
d

(1)
j ; δ(1)

j

)
1,m1

}
,

{
τi(1)

(
d

(1)
ji(1) ; δ(1)

ji(1)

)
m1+1,q

i(1)

}
;

. . . ;
{

(d(r)
j ; δ(r)

j )1,mr

}
,

{
τi(r)

(
d

(r)
ji(r) ; δ(r)

ji(r)

)
mr+1,q

i(r)

}
.

Let

f1(x) = ℵ0,n:V
pi,qi,τi;R:W


p1 (1− x)m

′
1 (1 + x)m

′′
1

...
pr (1− x)m

′
r (1 + x)m

′′
r

∣∣∣∣∣∣∣∣
A
...
B

 .
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Substituting for f1(x), f2(y) and f3(z) in equation (2.7), which is justifiable under the
given conditions, we evaluate the y and z-integrals, first and the write the multivariable
Aleph-function into the Mellin-Barnes contour integral with the help of (3.1), apply
the result [5, Vol. II, page 284, (3)],

∫ 1

−1
(1− x)l (1 + x)σ P (α,β)

n (x)dx(3.3)

=2l+σ+1Γ (l + 1) Γ (σ + 1)
Γ (l + σ + 2) × 3F2 (−n, α + β + n+ 1, l + 1;α + 1, l + σ + 2; 1) ,

with Re (α) > −1, Re (β) > −1, and finally interpret the resulting Γ-functions with
the definition of multivariable Aleph-function. The temperature distribution in a
non-homogeneous moving rectangular parallelepiped is then

v (x, y, z, t) =µδe
−(µb+δc)Γ (α + 1)
bc2α+β−1

∞∑
n,m,l,N=0

(1− (−)m)
(
1− (−)l

)
(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (α + β + 2n+ 1) Γ (α + β + n+N + 1) Γ (−n+N)
N !Γ (α +N + 1) Γ (α + n+ 1) Γ (β + n+ 1) Γ (−n)

× exp
[
−
{
k0 n (n+ α + β + 1) + kπ2

(
m2

b2 + l2

c2

)}
t

]

× P (α,β)
n (x) cos mπ

b
y cos lπ

c
z ℵ0,n+2:V

pi+2,qi+1,τi;R:W


p12m′

1+m′′
1

...
pr2m

′
r+m′′

r

∣∣∣∣∣∣∣∣
(−α−N : m′1, . . . ,m′r) , (−β : m′′1, . . . ,m′′r) , A

...
(−α− β −N − 1 : m′1 +m′′1, . . . ,m

′
r +m′′r) , B

 .(3.4)

Provide that Re (α) > −1, Re (β) > −1, m′i, m′′i > 0 for i = 1, . . . , r, and

Re (α + 1) +
r∑
i=1

m′i min
16j6mi

Re
d(i)

j

δ
(i)
j

 >0,

Re (β + 1) +
r∑
i=1

m′′i min
16j6mi

Re
d(i)

j

δ
(i)
j

 >0,

| arg pk| < 1
2A

(k)
i π, where A(k)

i is defined by (3.2).

Remark 3.1. For detail and applications of Aleph-function, the reader can refer recent
work [2, 8, 16].
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4. Particular Cases

(a) When the rectangular parallelepiped moves with uniform velocity, the partial
differential equation (1.2) reduces to the unsteady case of the partial differential equa-
tion (1) of Carslaw and Jaeger [4] with no radiation but with variable conductibility.
We have α + β = 0 and

∂v

∂t
= k0

((
1− x2

) ∂2v

∂x2 + (β − α− 2x) ∂v
∂x

)
+ k

(
∂2v

∂y2 + ∂2v

∂z2

)
= 0,

and the temperature distribution in the parallelepiped between x = −1 and x =
1, y = 0 and y = b, z = 0 and z = c is given by

v (x, y, z, t)

=2µδe−(µb+δc)Γ (α + 1)
bc

∞∑
n,m,l,N=0

(1− (−)m)
(
1− (−)l

)
(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (2n+ 1) Γ (n+N + 1) Γ (−n+N)
N ! Γ (α +N + 1) Γ (α + n+ 1) Γ (β + n+ 1) Γ (−n)

× exp
[
−
(
k0 n (n+ 1) + kπ2

(
m2

b2 + l2

c2

))
t

]
P (α,β)
n (x) cos mπ

b
y cos lπ

c
z

× ℵ0,n+2:V
pi+2,qi+1,τi;R:W


p12m′

1+m′′
1

...
pr2m

′
r+m′′

r

∣∣∣∣∣∣∣∣
(−α−N : m′1, . . . ,m′r) , (−β : m′′1, . . . ,m′′r) , A

...
(−N − 1 : m′1 +m′′1, . . . ,m

′
r +m′′r) , B

 ,
under the same condition that (3.4) with α + β = 0.

(b) When the parallelepiped is stationary between x = −1 and x = 1, we have
α = β = 0 and the partial differential equation (1.2) reduces to

∂v

∂t
= k0

((
1− x2

) ∂2v

∂x2 − 2x∂v
∂x

)
+ k

(
∂2v

∂y2 + ∂2v

∂z2

)
= 0,

and the temperature distribution in the parallelepiped between x = −1 and x =
1, y = 0 and y = b, z = 0 and z = c is given by

v (x, y, z, t)

=2µδe−(µb+δc)

bc

∞∑
n,m,l,N=0

(
1− (−)m)(1− (−)l

)
(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (2n+ 1) Γ (n+N + 1) Γ (−n+N)
N ! Γ (N + 1) (Γ(n+ 1))2 Γ (−n)

exp
[
−
(
k0 n (n+ 1) + kπ2

(
m2

b2 + l2

c2

))
t

]

× Pn(x) cos mπ
b
y cos lπ

c
z
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× ℵ0,n+2:V
pi+2,qi+1,τi;R:W


p12m′

1+m′′
1

...
pr2m

′
r+m′′

r

∣∣∣∣∣∣∣∣
(−N : m′1, · · · ,m′r) , (0 : m′′1, . . . ,m′′r) , A

...
(−N − 1 : m′1 +m′′1, . . . ,m

′
r +m′′r) , B

 ,
where Pn(x) is a Legendre’s polynomial, under the same condition that (3.4) with
α = β = 0.

5. Aleph-Function of Two Variables

If r = 2, the multivariable Aleph-function reduces to Aleph-function of two variables
defined by Sharma [13](see also, [6]) and the general solution is
v (x, y, z, t)

=µδe
−(µb+δc)Γ (α + 1)
bc2α+β−1

∞∑
n,m,l,N=0

(1− (−)m)
(
1− (−)l

)
(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n ! (α + β + 2n+ 1) Γ (α + β + n+N + 1) Γ (−n+N)
N ! Γ (α +N + 1) Γ (α + n+ 1) Γ (β + n+ 1) Γ (−n)

× exp
[
−
(
k0 n (n+ α + β + 1) + kπ2

(
m2

b2 + l2

c2

))
t

]
P (α,β)
n (x) cos mπ

b
y cos lπ

c
z

× ℵ0,n+2:V
pi+2,qi+1,τi;R:W


p12m′

1+m′′
1

...
p22m′

2+m′′
2

∣∣∣∣∣∣∣∣
(−α−N : m′1,m′2) , (−β : m′′1,m′′2) , A

...
(−α− β −N − 1 : m′1 +m′′1,m

′
2 +m′′2) , B

 ,
under the same condition that (3.4) with r = 2.

6. I-Function of Two Variables

If r = 2 and τi, τi′ , τi′′ → 1 the multivariable Aleph-function reduces to I-function
of two variables defined by Sharma and Mishra [12] (see also, [11]) and the general
solution is
v (x, y, z, t)

=µδe
−(µb+δc)Γ (α + 1)
bc2α+β−1

∞∑
n,m,l,N=0

(1− (−)m)
(
1− (−)l

)
(µ2 +m2π2/b2) (δ2 + l2π2/c2)

× n! (α + β + 2n+ 1) Γ (α + β + n+N + 1) Γ (−n+N)
N ! Γ (α +N + 1) Γ (α + n+ 1) Γ (β + n+ 1) Γ (−n)

× exp
[
−
(
k0 n (n+ α + β + 1) + kπ2

(
m2

b2 + l2

c2

))
t

]
P (α,β)
n (x) cos mπ

b
y cos lπ

c
z

× I0,n+2:V
pi+2,qi+1,R:W


p12m′

1+m′′
1

...
p22m′

2+m′′
2

∣∣∣∣∣∣∣∣
(−α−N : m′1,m′2) , (−β : m′′1,m′′2) , A

...
(−α− β −N − 1 : m′1 +m′′1,m

′
2 +m′′2) , B

 ,
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under the same condition that (3.4) with r = 2 and τi, τi′ , τi′′ → 1.

7. Concluding Remarks

Specializing the parameters of the multivariable Aleph-function, we can obtain a
large number of results involving various special functions of one and several variables
useful in Mathematics analysis, Applied Mathematics, Physics and Mechanics. The
result derived in this paper is of general character and may prove to be useful in
several interesting situations appearing in the literature of sciences.
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