
Kragujevac Journal of Mathematics
Volume 42(3) (2018), Pages 399–417.

DERIVATIONS OF BE-ALGEBRAS FROM HYPER BE-ALGEBRAS

M. HAMIDI1 AND A. BORUMAND SAEID2

Abstract. In this paper, we investigate some results in (BE-algebras) dual BCK-
algebras and hyper (BE-algebras) dualK-algebras. We show that by a setX, we can
construct a hyper (BE-algebra) dual K-algebra. By concept of (BE-algebras) dual
BCK-algebras and fundamental relation on hyper (BE-algebras) dual K-algebras
the notion of fundamental (BE-algebras) dual BCK-algebras is introduced. We
prove that any (BE-algebra) dual BCK-algebra is a fundamental (BE-algebra) dual
BCK-algebra, in practical, any infinite set converts to fundamental (BE-algebra)
dual BCK-algebra of itself.

1. Introduction

In 1966, Imai and Iseki [2, 3] introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. As a generalization of a BCK-algebra, H. S.
Kim and Y. H. Kim introduced the notion of a BE-algebra and investigated several
properties [4].

The hyper algebraic structure theory was introduced in 1934 [5], by F. Marty
at the 8th congress of Scandinavian mathematicians. Hyperstructures have many
applications to several sectors of both pure and applied sciences. A. Radfar et al.
introduced the notion of hyper BE–algebra, dual hyper K-algebra and investigate
some properties [6]. Furthermore, they showed that under some condition hyper BE-
algebras are equivalent to dual hyper K-algebras. Fundamental relations are one of
the main tools in algebraic hyperstructures theory. In [1], M. Hamidi et al. introduced
the concept of fundamental relation on hyper BE-algebras and hyper K-algebras.
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Furthermore, they showed that quotient of any dual hyper K-algebra on a regular
relation is a hyper BE-algebra and this quotient on any good strongly regular relation
is a dual BCK-algebra. They introduced “δ” as a relation on (hyper BE-algebras)
dual hyper K-algebras and “δ∗” as a transitive closure of “δ” such that is the smallest
equivalence relation that contains “δ”.

In this paper, we need a relation for connecting category of (BE-algebras) dual
BCK-algebras and category of (hyper BE-algebras) dual hyper K-algebras. For this,
firstly we show that by any nonempty set can construct a hyper BE-algebra and dual
hyper K-algebra. We introduce the notion of fundamental (BE-algebra) dual BCK-
algebra via fundamental relation δ∗ on (hyper BE-algebra) dual hyper K-algebra. We
show that any nonempty set converts to a (BE-algebra) dual BCK-algebra such that
is isomorphic to a fundamental (BE-algebra) dual BCK-algebra and especially any
infinite (BE-algebra) dual BCK-algebra is isomorphic to fundamental (BE-algebra)
dual BCK-algebra of itself. Moreover, we find some relations between category of
(BE-algebras) dual BCK-algebras and (hyper BE-algebras) dual hyper K-algebras.

2. Preliminaries

Definition 2.1. [4, 7] An algebra (X; ∗, 1) of type (2, 0) is called a BE-algebra if
following axioms hold:
(BE1) x ∗ x = 1;
(BE2) x ∗ 1 = 1;
(BE3) 1 ∗ x = x;
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.
We introduce a relation “≤”on X by x ≤ y if and only if x ∗ y = 1. The BE–algebra
(X; ∗, 1) is said to be commutative, if for all x, y ∈ X, (x ∗ y) ∗ y = (y ∗ x) ∗ x.

Definition 2.2. [7] An algebra (X; ∗, 1) of type (2, 0) is called a dual BCK-algebra
if
(BE1) x ∗ x = 1 for all x ∈ X;
(BE2) x ∗ 1 = 1 for all x ∈ X;
(dBCK1) x ∗ y = y ∗ x = 1⇒ x = y;
(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1;
(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.

The dual BCK-algebra (X; ∗, 1) is said to be commutative, if for all x, y ∈ X,
(x ∗ y) ∗ y = (y ∗ x) ∗ x.

Theorem 2.1. [7] By every nonempty set, can construct a commutative dual BCK-
algebra.

Definition 2.3. [1, 6] Let H be a nonempty set and ◦ : H × H → P ∗(H) be
a hyperoperation. Then (H; ◦, 1) is called a hyper BE–algebra, if it satisfies the
following axioms:
(HBE1) x < 1 and x < x;
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(HBE2) x ◦ (y ◦ z) = y ◦ (x ◦ z);
(HBE3) x ∈ 1 ◦ x;
(HBE4) 1 < x implies x = 1, for all x, y, z ∈ H.

(H; ◦, 1) is called a dual hyper K-algebra if satisfies (HBE1), (HBE2) and the
following axioms:
(DHK1) x ◦ y < (y ◦ z) ◦ (x ◦ z);
(DHK4) x < y and y < x imply that x = y, for all x, y, z ∈ H,
where the relation “<” is defined by x < y if and only if 1 ∈ x ◦ y. For any two
nonempty subsets A and B of H, we define A < B if and only if there exist a ∈ A
and b ∈ B such that a < b and A ◦ B =

⋃
a∈A,b∈B

a ◦ b. The dual hyper K-algebra

(X; ◦, 1) is called a weak commutative dual hyper K-algebra, if for any x, y ∈ X,
((x ◦ y) ◦ y)⋂((y ◦ x) ◦ x) 6= ∅.

Theorem 2.2. [6] Let H be a hyper BE-algebra. Then
(i) A ◦ (B ◦ C) = B ◦ (A ◦ C);
(ii) A < A;
(iii) 1 < A implies 1 ∈ A;
(iv) x < y ◦ x;
(v) x < y ◦ z implies y < x ◦ z;
(vi) x < (x ◦ y) ◦ y;
(vii) z ∈ x ◦ y implies x < z ◦ y;
(viii) y ∈ 1 ◦ x implies y < x, for all x, y, z ∈ H and A,B,C ⊆ H.

Theorem 2.3. [1] Let (X; ◦, 1) be a (hyper BE-algebra) dual hyper K-algebra and R
be an equivalence relation on X. Then, R is a regular relation on X if and only if
(X/R; ∗, 1) is a hyper BE-algebra, where for any x, y ∈ X/R

x ∗ y = {z|z ∈ x ◦ y}

and a binary relation “<” on X/R by

x < y ⇔ 1 ∈ x ∗ y.

Theorem 2.4. [1] Let (X; ◦, 1) be a (hyper BE-algebra) dual hyper K-algebra and
R be an equivalence relation on X. If R is a strongly regular relation on X, then
(X/R; ∗, 1) is a BE-algebra.

3. Constructing of (BE-algebras) Dual BCK-algebras and (Hyper
BE-algebras) Dual Hyper K-algebras

In this section, we construct a commutative (BE-algebra) dual BCK-algebra and a
weak commutative (hyper BE-algebra) dual hyper K-algebra from arbitrary set. We
show that the sets with the same cardinal number convert to isomorphic BE-algebras,
dual BCK-algebras, hyper BE-algebras and dual hyper K-algebras.
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Theorem 3.1. Let (X, ∗, 1) be a (BE-algebra) dual BCK-algebra. If Y is a set and
|X| = |Y |, then there exists a binary operation “∗′” and 1′ on Y , such that (Y, ∗′, 1′)
is a (BE-algebra) dual BCK-algebra and (X, ∗, 1) ∼= (Y, ∗′, 1′).

Proof. Since |X| = |Y |, then there exists a bijection ϕ : X → Y . For any y1 , y2 ∈ Y ,
we define a binary operation “∗′” on Y as follows:

y1 ∗′ y2 = ϕ(x1 ∗ x2),
where y1 = ϕ(x1), y2 = ϕ(x2) and x1 , x2 ∈ X. It is easy to show that ∗′ is well-defined.
Let y1 = y′1 and y2 = y′2 . Since ϕ is a bijection, then there exist unique elements
x1 , x2 , x

′
1 , x
′
2 ∈ X such that y1 = ϕ(x1), y2 = ϕ(x2), y′1 = ϕ(x′1), y′2 = ϕ(x′2) and so

x1 = x′1 , x2 = x′2 . Hence, y1 ∗′ y2 = ϕ(x1 ∗ x2) = ϕ(x′1 ∗ x
′

2) = y′1 ∗
′ y′2 . We can show

that (Y, ∗′, 1′) is a (BE-algebra) dual BCK-algebra. Let x1 , x2 ∈ X. Then
ϕ(x1 ∗ x2) = ϕ(x1) ∗′ ϕ(x2)

and ϕ(1) = ϕ(x ∗ x) = ϕ(x) ∗′ ϕ(x) = 1′. Therefore, ϕ is homomorphism and then is
isomorphism. �

Theorem 3.2. Let (X, ◦, 1) be a (hyper BE-algebra) dual hyper K-algebra. If Y is a
set and |X| = |Y |, then there exists a binary hyperoperation “◦′” and 1′ on Y , such
that (Y, ◦′, 1′) is a (hyper BE-algebra) dual hyper K-algebra and (X, ◦, 1) ' (Y, ◦′, 1′).

Proof. Since |X| = |Y |, then there exists a bijection ϕ : X → Y . For any y1 , y2 ∈ Y ,
we define a binary hyperoperation “◦′” on Y as follows:

y1 ◦′ y2 = ϕ(x1 ◦ x2),
where y1 = ϕ(x1), y2 = ϕ(x2) and x1 , x2 ∈ X. It is easy to show that ◦′ is well-defined.
Now, we define 1′ = ϕ(1). We can show that (Y, ◦′, 1′) is a (hyper BE-algebra) dual
hyper K-algebra.

Let x1 , x2 ∈ X. Then
ϕ(x1 ◦ x2) = ϕ(x1) ◦′ ϕ(x2).

Therefore, ϕ is homomorphism and then is isomorphism. �

Theorem 3.3. Let (X, ?, 1) and (Y, ?′, 1′) be dual BCK-algebras. Then there exists a
binary hyperoperation “◦” and “1′′”on X × Y , such that (X × Y, ◦, 1′′) is a dual hyper
K-algebra.

Proof. Let (X, ?, 1) and (Y, ?′, 1′) be two dual BCK-algebras. For any (x1, y1), (x2, y2)
∈ X × Y , we define the binary hyperoperation “◦” on X × Y as follows:

(x1, y1) ◦ (x2, y2) = {(x1 ? x2, y2), (x1 ? x2, y1 ?
′ y2)}

and 1′′ = (1, 1′). First, we show that the hyperoperation “◦” is well defined.
Let (x1, y1) = (x′1, y′1) and (x2, y2) = (x′2, y′2). Then,

(x1, y1) ◦ (x2, y2) ={(x1 ? x2, y2), (x1 ? x2, y1 ?
′ y2)}(3.1)

={(x′1 ? x′2, y′2), (x′1 ? x′2, y′1 ?′ y′2)}
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=(x′1, y′1) ◦ (x′2, y′2).
Now, we define a binary relation “<′′” on X × Y as follows:

(x, y) <′′ (z, w) if and only if (1, 1′) ∈ (x, y) ◦ (z, w).
We show that for any (x, y), (z, w) ∈ X × Y ,
(3.2) (x, y) <′′ (z, w) if and only if x < z and y <′ w.

For this, let (x, y) <′′ (z, w). Then (1, 1′) ∈ (x, y) ◦ (z, w) = {(x ? z, w), (x ? z, y ?′ w)}
and so (1, 1′) = (x ? z, w) or (1, 1′) = (x ? z, y ?′ w). If (1, 1′) = (x ? z, w), then x < z
and y <′ w = 1′. If (1, 1′) = (x ? z, y ?′ w), then x < z and y <′ w. Therefore, in any
cases, we have, x < z and y <′ w.

Conversely, let x < z and y <′ w. Then x ? z = 1 and y ?′ w = 1′. Hence
(1, 1′) ∈ (x, y) ◦ (z, w). Therefore, (x, y) <′′ (z, w).

Now, we will show that (X×Y, ◦, 1′′) is a dual hyperK-algebra. Let (x1, y1), (x2, y2),
(x3, y3) ∈ X × Y . Then we have the following.
(HBE1) By (3.2), (x1, y1) <′′ (x1, y1) and (x1, y1) <′′ (1, 1′).
(HBE2)

(x1, y1) ◦ ((x2, y2)) ◦ (x3, y3))
=(x1, y1) ◦ {(x2 ? x3, y3), (x2 ? x3, y2 ?

′ y3)}
={(x1 ? (x2 ? x3), y3), (x1 ? (x2 ? x3), y1 ?

′ y3), (x1 ? (x2 ? x3), y2 ?
′ y3),

(x1 ? (x2 ? x3), y1 ?
′ (y2 ?

′ y3))}
={(x2 ? (x1 ? x3), y3), (x2 ? (x1 ? x3), y1 ?

′ y3), (x2 ? (x1 ? x3), y2 ?
′ y3),

(x2 ? (x1 ? x3), y2 ?
′ (y1 ?

′ y3))}
=(x2, y2) ◦ {(x1 ? x3, y3), (x1 ? x3, y1 ?

′ y3)}
=(x2, y2) ◦ ((x1, y1) ◦ (x3, y3)).

(HBE3) (1, 1′) ◦ (x, y) = {(1 ? x, y), (1 ? x, 1′ ?′ y)} = {(x, y)}.
(HBE4) If (1, 1′) <′′ (x, y), then by (3.2), (x, y) = (1, 1′).
(DHK3)

((x2, y2) ◦ (x3, y3)) ◦ ((x1, y1) ◦ (x3, y3))
={(x2 ? x3, y3), (x2 ? x3, y2 ?

′ y3)} ◦ {(x1 ? x3, y3), (x1 ? x3, y1 ?
′ y3)}

={((x2 ? x3) ? (x1 ? x3), y3), ((x2 ? x3) ? (x1 ? x3), y3 ?
′ y3),

((x2 ? x3) ? (x1 ? x3), y1 ?
′ y3)), ((x2 ? x3) ? (x1 ? x3), y3 ?

′ (y1 ?
′ y3))),

((x2 ? x3) ? (x1 ? x3), (y2 ?
′ y3) ?′ y3)), ((x2 ? x3) ? (x1 ? x3), (y2 ?

′ y3) ?′ (y1 ?
′ y3)}.

Since (x1, y1) ◦ (x2, y2) = {(x1 ? x2, y2), (x1 ? x2, y1 ?
′ y2)}, we get

(x1, y1) ◦ (x2, y2) <′′ ((x2, y2) ◦ (x3, y3)) ◦ ((x1, y1) ◦ (x3, y3)).
(DHK4) Let (x1, y1) <′′ (x2, y2) and (x2, y2) <′′ (x1, y1). Then by (3.2), (x1, y1) =
(x2, y2). Therefore, (X × Y, ◦, 1′′) is a dual hyper K-algebra. �
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Corollary 3.1. Let (X, ?, 1) and (Y, ?′, 1′) be BE-algebras. Then there exists a binary
hyperoperation “◦” and “1′′” on X×Y , such that (X×Y, ◦, 1′′) is a hyper BE-algebra.

Example 3.1. Consider the dual BCK-algebras ({1, 2, 3, 4}, ?, 1) and ({a, b}, ?′, a) as
follows:

? 1 2 3 4
1 1 2 3 4
2 1 1 3 4
3 1 2 1 4
4 1 2 3 1

,
?′ a b
a a b
b a a

.

Now for any x, y, w we set wx = (w, x), wx = {(w, x)}, wx,y = {(w, x), (w, y)} and
define a hyperoperation “◦” on {1, 2, 3, 4} × {a, b} as follows:

◦ 1a 1b 2a 2b 3a 3b 4a 4b
1a 1a 1b 2a 2b 3a 3b 4a 4b
1b 1a 1a,b 2a 2a,b 3a 3a,b 4a 4a,b
2a 1a 1b 1a 1b 3a 3b 4a 4b
2b 1a 1a,b 1a 1a,b 3a 3a,b 4a 4a,b
3a 1a 1b 2a 2b 1a 1b 4a 4b
3b 1a 1a,b 2a 2a,b 1a 1a,b 4a 4a,b
4a 1a 1b 2a 2b 3a 3b 1a 1b
4b 1a 1a,b 2a 2a,b 3a 3a,b 1a 1a,b

.

Then it is easy to see that ({1, 2, 3, 4} × {a, b}, ◦, 1a) is a dual hyper K-algebra.

Corollary 3.2. Let (X, ?, 1) be a (BE-algebra) dual BCK-algebra. Then for any
arbitrary distinct elements a, b:
(i) there exists a binary hyperoperation “◦”, and constant “1′” on X × {a, b}, such
that (X × {a, b}, ◦, 1′) is a (hyper BE-algebra) dual hyper K-algebra;
(ii) if X is infinite, then there exists a binary hyperoperation “◦”, a constant “1”
on X, ◦′ and 1′ on X × {a, b} such that (X, ◦, 1) and (X × {a, b}, ◦′, 1′) are (hyper
BE-algebra) dual hyper K-algebras and (X × {a, b}, ◦′, 1′) ∼= (X, ◦, 1).

Theorem 3.4. By every nonempty set, we can construct a weak commutative dual
hyper K-algebra.

Proof. Let X be an arbitrary nonempty set. If |X| ≤ 2, is clear. But if |X| > 2, for
any x, y ∈ X, we define a binary operation “◦” on X as follows:

x ◦ y =

{x0 , p}, if x = y,

{y}, otherwise,

and
x < y if and only if x0 ∈ x ◦ y,

where x0 and p are fixed elements of X. Now, we show that (X, ◦, x0) is a dual hyper
K-algebra.
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(HBE1) Let x ∈ X. Then by definition of ◦, x0 ∈ x ◦ x and x0 ∈ x ◦ x0 and so x < x0

and x < x.
(HBE2) Let x, y, z ∈ X. We consider the following cases.
Case 1: x, y, z are distinct. Then, x ◦ (y ◦ z) = x ◦ {z} = {z} = y ◦ {z} = y ◦ (x ◦ z).
Case 2: x = y 6= z. Then, x ◦ (y ◦ z) = x ◦ {z} = {z} = y ◦ {z} = y ◦ (x ◦ z).
Case 3: x = z 6= y. Then, x ◦ (y ◦ z) = x ◦ {z} = {x0 , p} = y ◦ {x0 , p} = y ◦ (x ◦ z).
Case 4: y = z 6= x. Then, x ◦ (y ◦ z) = x ◦ {x0 , p} = {x0 , p} = y ◦ {z} = y ◦ (x ◦ z).
Case 5: x = y = z. Then, x ◦ (y ◦ z) = x ◦ {x0 , p} = {x0 , p} = y ◦ {x0 , p} = y ◦ (x ◦ z).
(DHK3) Let x, y, z ∈ X. We have the following cases.
Case 1: x, y, z are distinct. Then, x ◦ y = {y} < {x0 , p} = {z} ◦ {z} = (y ◦ z) ◦ (x ◦ z).
Case 2: x = y 6= z. Then, x ◦ y = {x0 , p} < {x0 , p} = {z} ◦ {z} = (y ◦ z) ◦ (x ◦ z).
Case 3: x = z 6= y. Then, x ◦ y = {y} < {x0 , p} = {z} ◦ {x0 , p} = (y ◦ z) ◦ (x ◦ z).
Case 4: y = z 6= x. Then, x ◦ y = {y} < {z} = {x0 , p} ◦ {z} = (y ◦ z) ◦ (x ◦ z).
Case 5: x = y = z. Then, x◦y = {x0 , p} < {x0 , p} = {x0 , p}◦{x0 , p} = (y◦z)◦(x◦z).
(DHK4) Let x, y ∈ X. Then by definition of ◦, x0 ∈ x ◦ y = x ◦ y implies that x = y.
Moreover, for any x, y ∈ X, x0 ∈ (x ◦ y) ◦ y ∩ (y ◦ x) ◦ x 6= ∅.

Therefore, (X, ◦, x0) is a weak commutative dual K-algebra. �

Example 3.2. Let X = {1, a, b, c, d, e}. Define the hyperoperation “◦” as follows:

◦ 1 a b c d e

1 {1, e} {a} {b} {c} {d} {e}
a {1, e} {1, e} {b} {c} {d} {e}
b {1, e} {a} {1, e} {c} {d} {e}
c {1, e} {a} {b} {1, e} {d} {e}
d {1, e} {a} {b} {c} {1, e} {e}
e {1, e} {a} {b} {c} {d} {1, e}

.

Then (X; ◦, 1) is a weak commutative dual hyper K–algebra.

Corollary 3.3. By every nonempty set, we can construct a weak commutative hyper
BE-algebra.

4. Fundamental (BE-algebras) dual BCK-algebras

In this section, by using the notion of fundamental relation, we define the concept
of fundamental (BE-algebra) dual BCK-algebra and we prove that any (BE-algebra)
dual BCK-algebra is a fundamental (BE-algebra) dual BCK-algebra.

Now, in the following, we apply the concept of δ∗ relation on (hyper BE–algebra)
dual hyper K–algebra which is studied in [1]. Let (X; ◦, 1) be a (hyper BE-algebra)
dual hyper K-algebra and A be a subset of X. L(A) will denote the set of all finite

combinations of elements A with ◦ and
n⊙
i=1

ai = a1 ◦ a2 ◦ . . . an.
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Definition 4.1. Let (X; ◦, 1) be a (hyper BE–algebra) dual hyper K–algebra. Con-
sider

δ1 = {(x, x)|x ∈ X}
and for every integer n ≥ 1, δn, define as follows:

xδny ⇔ ∃(a1, a2, . . . , an) ∈ Xn,∃u ∈ L(a1, a2, . . . , an) {x, y} ⊆ u.

Obviously, for every n ≥ 1, the relations δn are symmetric, the relation δ =
⋃
n≥1

δn is

a reflexive and symmetric relation. Let δ∗ be the transitive closure of δ (the smallest
transitive relation such that contains δ).

Example 4.1. Let X = {1, a, b, c}. Then (X, ◦, 1) is a weak dual hyper K-algebra as
follows:

◦ 1 a b c

1 {1, a} {a} {b} {c}
a {1, a} {1, a} {b} {c}
b {1, a} {a} {1, a} {c}
c {1, a} {a} {b} {1, a}

.

Now, δ = {(1, 1), (a, a), (b, b), (c, c), (1, a), (a, 1)} and clearly δ∗ = δ.

Theorem 4.1. [1] Let (X; ◦, 1) be a (hyper BE-algebra) weak commutative dual hyper
K-algebra. Then δ∗ is a (strongly regular) good strongly regular on X.

Theorem 4.2. [1] Let (X; ◦, 1) be a (hyper BE-algebra) weak commutative dual hyper
K-algebra. Then (X/δ∗; ∗, 1) is a (BE-algebra) commutative dual BCK-algebra.

Lemma 4.1. Let (X, ◦X , 1X) and (Y, ◦Y , 1Y ) be (hyper BE-algebras) dual hyper K-
algebras. Then
(i) there exists a hyperoperation “◦X×Y ” and “1X×Y ” on X×Y such that (X×Y, ◦X×Y ,
1X×Y ) is a (hyper BE-algebras) dual hyper K-algebra;
(ii) for any (x, y), (x′, y′) ∈ X × Y , we have (x, y)δ∗X×Y (x′, y′) if and only if x δ∗X x′

and y δ∗Y y′.

Proof. (i) For any (x, y), (x′, y′) ∈ X × Y, define ◦X×Y on X × Y as follows:

(x, y) ◦X×Y (x′, y′) = (x ◦X x′)× (y ◦Y y′)

and 1X×Y = (1X , 1Y ). It is easy to verify that (X × Y, ◦X×Y , 1X×Y ) is a (hyper BE-
algebra) dual hyper K-algebra.
(ii) Let (x, x′) ∈ X2 and (y, y′) ∈ Y 2. Then xδ∗Xx

′ and yδ∗Y y
′ if and only if there

exist u ∈ L(X) and v ∈ L(Y ) such that {x, x′} ⊆ u and {y, y′} ⊆ v, if and only if
{(x, y), (x′, y′)} ∈ u× v if and only if (x, y)δ∗X×Y (x′, y′). �

Example 4.2. Let X = {1, 2, 3} and Y = {a, b}. Then (X; ◦1, 1) and (Y ; ◦2, 1) are
dual hyper K-algebras by the following tables:
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◦1 1 2 3
1 {1, 3} {2} {3}
2 {1, 3} {1, 3} {3}
3 {1, 3} {2} {1, 3}

,

◦2 a b

a {a, b} {b}
b {a, b} {a, b}

.

Now we define a hyperoperation “◦” on {1, 2, 3} × {a, b} as follows:
◦ (1, a) (1, b) (2, a) (2, b) (3, a) (3, b)

(1, a) A×B A× {b} {2} ×B {(2, b)} {3} ×B {(3, b)}
(1, b) A×B A× {a, b} {2} ×B {2} ×B {3} ×B {3} ×B
(2, a) A×B A× {b} A×B A× {b} {3} ×B {(3, b)}
(2, b) A×B A×B A×B A×B {3} ×B {3} ×B
(3, a) A×B A× {b} {2} ×B {(2, b)} A×B A× {b}
(3, b) A×B A×B {2} ×B {2} ×B A×B A×B

,

where A = {1, 3} and B = {a, b}. Clearly ({1, 2, 3} × {a, b}, ◦, (1, a)) is a dual hyper
K-algebra.

Theorem 4.3. Let (X, ◦X , 1X) and (Y, ◦Y , 1Y ) be (hyper BE-algebras) dual hyper
K-algebras. Then

(X × Y, ◦X×Y , 1X×Y )
δ∗

X×Y

∼=
(X, ◦X , 1X)

δ∗
X

× (Y, ◦Y , 1Y )
δ∗

Y

.

Proof. Define the mapping:

ϕ :
(

(X × Y, ◦X×Y )
δ∗X×Y

, ∗
)
→
(

(X, ◦X)
δ∗X

× (K, ◦Y )
δ∗Y

, ∗
)
,

by ϕ(δ∗X×Y (x, y)) = (δ∗X(x), δ∗Y (y)). Firstly, we show that ϕ is well defined and one to
one. Let (x1 , y1), (x2 , y2) ∈ X × Y . Then, by Lemma 4.1, δ∗X×Y (x1 , y1) = δ∗X×Y (x2 , y2)
if and only if δ∗

X
(x1) = δ∗

X
(x2) and δ∗

Y
(y1) = δ∗

Y
(y2) if and only if ϕ(δ∗X×Y (x1 , y1)) =

ϕ(δ∗X×Y (x2 , y2)). Secondly, we show that ϕ is homomorphism. Let (x1 , y1), (x2 , y2) ∈
X × Y . Then, by Lemma 4.1, for any c ∈ δ∗X(x1) ◦X δ∗X(x2) and d ∈ δ∗Y (y1) ◦Y δ∗Y (y2)
we have

ϕ(δ∗X×Y (x1 , y1) ∗ (δ∗X×Y (x2 , y2)) =ϕ(δ∗X×Y (c, d)) = (δ∗X(c), δ∗Y (d))
=(δ∗X(x1), δ∗Y (y1)) ∗ (δ∗X(x2), δ∗Y (y2))
=ϕ(δ∗X×Y (x1 , y1)) ∗ ϕ(δ∗X×Y (x2 , y2))

and ϕ(δ∗X×Y (1X , 1Y )) = (δ∗X(1X), δ∗Y (1Y )). Clearly, ϕ is a bijection and hence, ϕ is an
isomorphism. �

Theorem 4.4. Let (X, ◦, 1), (Y, ◦′, 1′) be (hyper BE-algebras) dual hyper K-algebras
and f : (X, ◦, 1)→ (Y, ◦′, 1′) be a homomorphism. Then the following statements are
satisfied:
(i) for any x, y ∈ X, xδ∗y implies that f(x)δ∗f(y);
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(ii) if f is an injective, then for any x, y ∈ X, f(x)δ∗f(y) implies that xδ∗y;
(iii) if f is a bijection, then for any x, y ∈ X, xδ∗y if and only if f(x)δ∗f(y);
(iv) if f is a bijection, then for any x ∈ X, f(δ∗(x)) = δ∗(f(x)).

Proof. (i) Let x, y ∈ X. Since xδ∗y, then there exists u ∈ L(X), such that {x, y} ⊆ u.
Now, for a homomorphism f : (X, ◦, 1)→ (Y, ◦′, 1′) we have {f(x), f(y)} = f{x, y} ⊆
f(u) ∈ L(Y ). Therefore, f(x)δ∗f(y).
(ii) For x, y ∈ X, since f(x)δ∗f(y), there exists v ∈ L(Y ), such that {f(x), f(y)} ⊆ v.
Since f : (X, ◦, 1)→ (Y, ◦′, 1′) is injective, we get,

{x, y} = {f−1(f(x)), f−1(f(y))} = f−1{f(x), f(y)} ⊆ f−1(v) ∈ L(X).
Therefore, xδ∗y.
(iii) By (i) and (ii), the proof is straightforward.
(iv) Let x ∈ X. Then we have f(δ∗(x)) =

⋃
y∈δ∗(x)

f(y) =
⋃
yδ∗x

f(y). By (iii), for any

x, y ∈ X, xδ∗y if and only if f(x)δ∗f(y). Therefore,
f(δ∗(x)) =

⋃
y∈δ∗(x)

f(y) =
⋃
yδ∗x

f(y)

=
⋃

f(y)δ∗f(x)
f(y) =

⋃
f(y)∈δ∗(f(x))

f(y)

=δ∗(f(x)). �

Example 4.3. Let X = {1, a, b, c, d} and Y = {x, y, z, t}. Then (X; ◦1, 1) and (Y ; ◦2, 1)
are hyper BE-algebras by the following tables:

◦1 1 a b c d

1 {1, d} {a} {b} {c} {d}
a {1, d} {1, d} {b} {c} {d}
b {1, d} {a} {1, d} {c} {d}
c {1, d} {a} {b} {1, d} {d}
d {1, d} {a} {b} {c} {1, d}

,

◦2 x a b c

x {x} {y} {z} {t}
y {x} {x} {z} {t}
z {x} {y} {x} {t}
t {x} {y} {z} {x}

.

Now, we define a map f : (X; ◦1, 1) → (Y ; ◦2, x) by f(c) = z, f(d) = t and f(1) =
f(a) = f(b) = x. Clearly f is a homomorphism, but is not injective and f(b) ∈
δ∗(f(1)), but b 6∈ δ∗(1).

Theorem 4.5. Let (X, ◦, 1) be a (hyper BE-algebra) dual hyper K-algebra. If Y is a
set and |X| = |Y |, then there exists a binary hyperoperation “◦′” “1′” on Y , such that(

(X,◦,1)
δ∗

, ∗
) ∼= (

(Y,◦′,1′)
δ∗

, ∗
)
.

Proof. Since |X| = |Y |, then by Theorem 3.2, there exists a binary hyperoperation
“◦′”, and 1′ on Y such that (Y, ◦′, 1′) is a (hyper BE-algebras) dual hyper K-algebra.
Moreover, there exists an isomorphism f : (X, ◦, 1)→ (Y, ◦′, 1′), such that f(1) = 1′.
Now, we define the map ϕ :

(
(X,◦,1)
δ∗

, ∗
)
→
(

(Y,◦′,1′)
δ∗

, ∗
)
by ϕ(δ∗(x)) = δ∗(f(x)). First,



DERIVATIONS OF BE-ALGEBRAS FROM HYPER BE-ALGEBRAS 409

we show that for any x1 , x2 ∈ X, ϕ(δ∗(x1) ∗ δ∗(x2)) = ϕ(δ∗(x1)) ∗ ϕ(δ∗(x2)). For any
x1 , x2 ∈ X we have

ϕ(δ∗(x1) ∗ δ∗(x2)) =ϕ(δ∗(x1 ◦ x2)) = δ∗(f(x1 ◦ x2))
=δ∗(f(x1) ◦′ f(x2)) = δ∗(f(x1)) ∗ δ∗(f(x2))
=ϕ(δ∗(x1)) ∗ ϕ(δ∗(x2)).(4.1)

Since f is bijection, then ϕ is a bijection. Now, we show that ϕ is well-defined. Let
y1 , y2 ∈ Y . Then there exist unique elements x1 , x2 ∈ X such that y1 = f(x1) and
y2 = f(x2). Now, by Equation (4.1) and Theorem 4.4, ϕ(δ∗(x1)) = ϕ(δ∗(x2)) if and
only if δ∗(f(x1)) = δ∗(f(x2)) if and only if δ∗(x1) = δ∗(x2). Therefore, ϕ is well-
defined and one to one and by Equation (4.1), is a homomorphism. Hence ϕ is an
isomorphism. Therefore,

(
(X,◦,1)
δ∗

, ∗
) ∼= (

(Y,◦′,1′)
δ∗

, ∗
)
. �

Corollary 4.1. Let (X, ◦, 1) and (Y, ◦′, 1′) be isomorphic (hyper BE-algebras) dual
hyper K-algebra. Then

(
(X,◦,1)
δ∗

, ∗
) ∼= (

(Y,◦′,1′)
δ∗

, ∗
)
.

Definition 4.2. A (BE-algebra) dual BCK-algebra (X, ?, 1), is called a (fundamental
BE-algebra) fundamental dual BCK-algebra, if there exists a nontrivial (hyper BE-
algebra) dual hyper K-algebra (Y, ◦′, 1′), such that

(
(Y,◦′,1′)

δ∗
, ∗
) ∼= (X, ?, 1). In other

words, it is equal to the fundamental of nontrivial (hyper BE-algebra) dual hyper
K-algebra up to isomorphic.

Example 4.4. Let X = {1, 2, 3}. Then (X, ?, 1) is a BE-algebra as follows:
? 1 2 3
1 1 2 3
2 1 1 3
3 1 2 1

.

We construct a dual hyper K-algebra (Y = {a, b, c, d}, ◦, a) as follows:
◦ a b c d
a {a, b} {b} {c} {d}
b {a, b} {a, b} {c} {d}
c {b, a} {b} {a, b} {d}
d {a, b} {b} {c} {a, b}

.

Clearly, δ∗(a) = {a, b}, δ∗(c) = {c} and δ∗(d) = {d} and so Y
δ∗

= {{a, b}, {c}, {d}}.
Now, we have

∗ δ∗(a) δ∗(c) δ∗(d)
δ∗(a) δ∗(a) δ∗(c) δ∗(d)
δ∗(c) δ∗(a) δ∗(a) δ∗(d)
δ∗(d) δ∗(a) δ∗(c) δ∗(a)

.

Clearly,
(
Y
δ∗
, ∗, δ∗(a)

)
is a dual BCK-algebra and (X, ?, 1) ∼=

(
Y
δ∗
, ∗, δ∗(a)

)
. Therefore,

(X, ?, 1) is a fundamental dual BCK-algebra.
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Remark 4.1. We know that on any (BE-algebra) dual BCK-algebra (X, ?, 1), if define
a binary hyperoperation ′′◦′′ as x ◦ y = {x ? y} such that is a singleton, then (X, ◦, 1)
is a trivial (hyper BE-algebra) dual hyper K-algebra. Therefore, its fundamental
(BE-algebra) dual BCK-algebra is isomorphic to (X, ?, 1). In the following, we define
nontrivial (hyper BE-algebra) dual hyper K-algebra such that its fundamental (BE-
algebra) dual BCK-algebra, be isomorphic to given (BE-algebra) dual BCK-algebra
(X, ?, 1).

Theorem 4.6. Every dual BCK-algebra is isomorphic to a fundamental dual BCK-
algebra.

Proof. Let (X, ?, 1) be a dual BCK-algebra. Then by Theorem 3.3, for any dual BCK-
algebra (Y, ?′, 1′), (X×Y, ◦, (1, 1′)) is a dual hyper K-algebra. First, we show that for

any (a, b) ∈ X×Y , δ∗(a, b) = {(a, x) | x ∈ Y }. For this let, u =
n⊙
i=1

(xi, yi) ∈ L(X×Y ),

where (xi, yi) ∈ X × Y . We have

u =
n⊙
i=1

(xi, yi) =
{

(
n⊙
i=1

xi, yi), |xi ∈ X, yi ∈ Y
}
.

Then we obtain u = {(a, yi)|a ∈ X is fixed and yi ∈ Y }. Hence, for any (a, b), (c, d) ∈
X × Y , (a, b)δ∗(c, d) if and only if a = c. Now, we define the map

ϕ :
(

(X × Y, ◦, (1, 1′))
δ∗

, ∗
)
→ (X, ?, 1)

by ϕ(δ∗(x, y)) = x. It is clear that δ∗(x, y) = δ∗(x′, y′) if and only if x = x′ if and
only if ϕ(δ∗(x, y)) = ϕ(δ∗(x′, y′)). Then, ϕ is well defined and one to one. In follow,
we show that ϕ is a homomorphism. For this we have,

ϕ(δ∗(x, y) ∗ δ∗(x′, y′)) = ϕ(δ∗(x ? x′, y)) = x ? x′ = ϕ(δ∗(x, y)) ? ϕ(δ∗(x′, y′)).
Clearly, ϕ is onto. Therefore, ϕ is an isomorphism. �

Remark 4.2. (i) The (hyper BE-algebras) dual hyper K-algebra (X×Y, ◦, 1) is called
the associated (hyper BE-algebras) dual hyper K-algebra to X via Y (or shortly
associated (hyper BE-algebras) dual hyper K-algebra) and denote by XY .
(ii) The mapping ϕ : X → XY by ϕ(x) = (x, 1) is an embedding.

Theorem 4.7. Let (X, ∗, 1X) and (Y, ∗′, 1Y ) be isomorphic dual BCK-algebras. Then,
for any dual BCK-algebra (Z, ∗′′, 1Z), XZ and YZ are isomorphic dual hyper K-
algebras.

Proof. Let f : (X, ∗, 1X)→ (Y, ∗′, 1Y ) be an isomorphism. Define map θ : (XZ , ◦, 1)→
(YZ , ◦, 1) by θ(x, y) = (f(x), y), where x ∈ X, y ∈ Y . Clearly θ is a bijection, now we
show that θ is a homomorphism. Let (x1, y), (x2, y

′) ∈ XZ . Then,
θ((x1, y) ◦ (x2, y

′)) =θ({(x1 ∗ x2, y), (x1 ∗ x2, y
′)})

={θ(x1 ∗ x2, y), θ(x1 ∗ x2, y
′)} = {(f(x1 ∗ x2), y), (f(x1 ∗ x2), y′)}
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={(f(x1) ∗′ f(x2), y), (f(x1) ∗′ f(x2), y′)}
=(f(x1), y) ◦ (f(x2), y′))
=θ((x1, y)) ◦ θ((x2, y

′)).

Therefore, θ is an isomorphism and (XZ , ◦, 1) ∼= (YZ , ◦, 1). �

Corollary 4.2. Every BE-algebra is isomorphic to a fundamental BE-algebra.

Example 4.5. Let X = {1, 2, 3}. Then (X, ?, 1) is a BE-algebra as follows:
? 1 2 3
1 1 2 3
2 1 1 3
3 1 2 1

.

By Example 4.4, we saw that (X, ?, 1) is a fundamental dual BCK-algebra. Now, by
Theorem 4.6, we construct a new dual hyper K-algebra. Consider the dual BCK-
algebras ({1, 2, 3}, ?, 1) and ({a, b}, ?′, a) as follows:

? 1 2 3
1 1 2 3
2 1 1 3
3 1 2 1

,
?′ a b
a a b
b a a

.

Now we define a hyperoperation “◦” on {1, 2, 3} × {a, b} as follows:
◦ (1, a) (1, b) (2, a) (2, b) (3, a) (3, b)

(1, a) {(1, a)} A {(2, a)} B {(3, a)} C
(1, b) A {(1, b)} B {(2, b)} C {(3, b)}
(2, a) {(2, a)} B {(3, a)} C {(3, a)} C
(2, b) B {(2, b)} C {(3, b)} C {(3, b)}
(3, a) {(3, a)} C {(3, a)} C {(3, a)} C
(3, b) C {(3, b)} C {(3, b)} C {(2, b)}

,

where A = {(1, a), (1, b)}, B = {(2, a), (2, b)} and C = {(3, a), (3, b)}. Then it is
easy to see that (Z = {1, 2, 3} × {a, b}, ◦, (1, a)) is a dual hyper K-algebra. We have
δ∗((1, a)) = {(1, a), (1, b)}, δ∗((2, a)) = {(2, a), (2, b)} and δ∗((3, a)) = {(3, a), (3, b)}.
Hence Z

δ∗
= {δ∗((1, a)), δ∗((2, a)), δ∗((3, a))} and obtain the following table:

∗ δ∗(1, a) δ∗(2, a) δ∗(3, a)
δ∗(1, a) δ∗(1, a) δ∗(2, a) δ∗(3, a)
δ∗(2, a) δ∗(1, a) δ∗(1, a) δ∗(3, a)
δ∗(3, a) δ∗(1, a) δ∗(2, a) δ∗(1, a)

.

Clearly,
(
Z
δ∗
, ∗, δ∗((0, a))

)
is a dual BCK-algebra and (X, ?, 1) ∼=

(
Z
δ∗
, ∗, δ∗((0, a))

)
.

Therefore, (X, ?, 1) is a fundamental dual BCK-algebra.

Corollary 4.3. By every nonempty set, we can construct a fundamental (BE-algebra)
dual BCK-algebra.
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Proof. By Theorem 2.1, there exists a binary operation “?” and “x0” such that
(X, ?, x0) is a dual BCK-algebra. By Theorem 4.6, (X, ?, x0) is a fundamental dual
BCK-algebra. �

Theorem 4.8. Let (X, ?, 1) be any finite (BE-algebra) dual BCK-algebra. Then for
any binary hyperoperation “◦”, and constant “1′” on X, such that (X, ◦, 1′) is a (hyper
BE-algebra) dual hyper K-algebra, there is not any isomorphic between (X, ?, 1) and(

(X,◦,1′)
δ∗

, ∗
)
, that is (X, ?, 1) �

(
(X,◦,1′)
δ∗

, ∗
)
.

Proof. Let (X, ?, 1) be a finite (BE-algebra) dual BCK-algebra, |X| = n, “◦” be a
hyperoperation, and “1′” constant on X, such that (X, ◦, 1′) be a (hyper BE-algebra)
dual hyper K-algebra. Then there exist x, y ∈ X such that |x ◦ y| ≥ 2. Hence,
there are m,n ∈ x ◦ y such that δ∗(m) = δ∗(n). Since X

δ∗
= {δ∗(x) | x ∈ X}, then,

|X
δ∗
| < n = |X|. Therefore,

(
(X,◦,1′)
δ∗

, ∗
)
� (X, ?, 1). �

Theorem 4.9. Let (X, ?, 1) be a finite (BE-algebra) dual BCK-algebra such that
|X| ≥ 2. Then, there exists a hyperoperation “◦” on X such that (X, ◦, 1) is a dual
hyper K-algebra and |(X, ?, 1)| = |((X, ◦, 1)/δ∗, δ∗(1), ∗)|+ 1.

Proof. Let p ∈ X be a fixed element of X. Then by Theorem 3.4, (X, ◦, 1) is a dual
hyper K-algebra as follows:

x ◦ y =

{1, p}, if x = y,

{y}, otherwise,

where x, y ∈ X. Clearly δ∗(1) = {1, p} and for any x ∈ X, δ∗(x) = {x}. Therefore,
|(X, ?, 1)| = |((X, ◦, 1)/δ∗, δ∗(1), ∗)|+ 1. �

Remark 4.3. Now, in the follow we try to show that for any infinite set X, there exists
an operation “?”, constant 1 and a hyperoperation “◦” on X, such that (X, ?, 1) is
an (BE-algebra) dual BCK-algebra and (X, ◦, 1) is a (hyper BE-algebra) dual hyper
K-algebra. Moreover,

(
(X,◦,1)
δ∗

, ∗
) ∼= (X, ?, 1).

Theorem 4.10. Let X be an infinite set. Then there exists an operation “?”, constant
“1” and a binary hyperoperation “◦” on X such that

(
(X,◦,1)
δ∗

, ∗
) ∼= (X, ?, 1). That is,

X is a fundamental dual BCK-algebra of itself.

Proof. Let X be an infinite set. Then for any arbitrary set {a, b}, by Corollary 3.2,
there exists a binary hyperoperation “◦”, a constant “1” on X, ◦′ and 1′ on X×{a, b}
such that (X, ◦, 1) and (X×{a, b}, ◦′, 1′) are (hyper BE-algebra) dual hyperK-algebra
and (X × {a, b}, ◦′, 1′) ∼= (X, ◦, 1) and so

(4.2) (X × {a, b}, ◦′, (1, a))
δ∗

∼=
(X, ◦, 1)

δ∗
.
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First, we show that for any (m, t) ∈ X × {a, b}, δ∗(m, t) = {(m, a), (m, b)}. For this

let u =
n⊙
i=1

(mi, ni) ∈ L(X × {a, b}), where (mi, ni) ∈ X × {a, b}. We have

u =
n⊙
i=1

(mi, ni) =
{

(
n⊙
i=1

mi, a), (
n⊙
i=1

mi, b)
}
.

Now, we obtain u = {(m, a), (m, b)|m ∈ X is fixed}. Hence, for any (m, t), (n, s) ∈
X × {a, b},

(m, t)δ∗(n, s)⇔ m = n.

Moreover, by Theorem 2.1, there exists an operation ? and constant 1 such that
(X, ?, 1) is a dual BCK-algebra.

Now, we define the map ϕ :
(

(X×{a,b},◦′,(1,a))
δ∗

, ∗
)
→ (X, ?, 1) by ϕ(δ∗(m, t)) = m. It

is clear that δ∗(m, t) = δ∗(m′, s) if and only if m = m′ if and only if ϕ(δ∗(m, t)) =
ϕ(δ∗(m′, s)). Then, ϕ is well defined and one to one.

Now, we show that ϕ is a homomorphism. For this we have,

ϕ(δ∗(m, t) ∗ δ∗(m′, s)) =ϕ(δ∗(m ?m′, t)) = m ?m′ = ϕ(δ∗(m, t)) ? ϕ(δ∗(m′, s)).

Clearly, ϕ is onto. Hence, ϕ is an isomorphism and so

(4.3)
(

(X × {a, b}, ◦′, (1, a))
δ∗

, ∗
)
∼= (X, ?, 1).

Therefore, by (4.2) and (4.3), we have

(X, ?, 1) ∼=
(X × {a, b}, ◦′, (1, a))

δ∗
∼=

(X, ◦, 1)
δ∗

.

�

Corollary 4.4. Any infinite set is isomorphic to fundamental BE-algebra of itself.

5. Categorical Relations on Dual Hyper K-algebras and Dual
BCK-algebras

In this section we need to connect (BE-algebras) dual BCK-algebras and (hyper
BE-algebras) dual hyper K-algebras, so apply the results of previous sections. First,
briefly introduce the category of dual hyper K-algebras (dual BCK-algebras). Cat-
egory DHk (Dbck), objects: (X, ◦, 1), (Y, ◦′, 1′), . . . that are dual hyper K-algebras
((X, ?, 1), (Y, ?′, 1′), . . . that are dual BCK-algebras). Arrows: f, g, . . . that are ho-
momorphisms. For two categories DHk and Dbck, define a categorical morphism as
follows:

F : DHk → Dbck by F (X) =
(
X

δ∗
, ∗, δ∗(1)

)
,(5.1)
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where (X, ◦, 1) is a dual hyper K-algebra and for any homomorphism f : (X, ◦, 1)→
(Y, ◦′, 1′), we define

F (f) :
(
X

δ∗
, ∗, δ∗(1)

)
→
(
Y

δ∗
, ∗, δ∗(1′)

)
by F (f) = δ∗(f).(5.2)

By Corollary 4.1, F is well-defined and we have the next result.
Theorem 5.1. F is a functor of DHk to Dbck.

Proof. For any object (X, ◦, 1) ofDHk, by (5.1), F (X) =
(
X
δ∗
, ∗, δ∗(1)

)
is a dual BCK-

algebra and then F (X) is an object in Dbck. Now, we show that for any morphism
f : (X, ◦, 1) → (Y, ◦′, 1′), Ff is a morphism in Dbck. Let δ∗(x), δ∗(y) ∈ X

δ∗
. Then, by

(5.2),
Ff(δ∗(x) ∗ δ∗(y)) =Ff(δ∗(x ◦ y)) = δ∗(f(x ◦ y))

=δ∗(f(x) ◦′ f(y)) = Ff(δ∗(x)) ∗ Ff(δ∗(y)).
Hence, if g : (X, ◦, 1) → (Y, ◦′, 1′) and f : (Y, ◦′, 1′) → (Z, ◦′′, 1′′) are morphisms
in DHk, then F (g) :

(
X
δ∗
, ∗, δ∗(1)

)
→

(
Y
δ∗
, ∗, δ∗(1′)

)
by F (g) = δ∗(g) and F (f) :

( Y
δ∗
, ∗, δ∗(1′))→ ( Z

δ∗
, ∗, δ∗(1′′)) by F (f) = δ∗(f) are morphisms in Dbck. Now,

F (f) ◦ F (g) = F (f)(F (g)) = F (f)(δ∗(g)) = δ∗(f ◦ g) = F (f ◦ g).
Moreover, for 1 : X → X, F (1) = δ∗(1) and then for any x ∈ X,

F (1)(x) = δ∗(1(x)) = δ∗(x) = 1FX(x).
Therefore, F is a functor of DHk to Dbck. �

Remark 5.1. If X is a dual BCK-algebra and
B(X) = {S ∈ Dbck| X is a fundamental dual BCK-algebra of S},

by Theorem 4.6, B(X) 6= ∅.
Now, for DHk and Dbck and any dual BCK-algebras (X, ∗, 1) and S = {a, b},

define a categorical morphism, as follows:
U : Dbck → DHk by U(X) = XS(5.3)

and for any dual BCK-algebra homomorphism f : (X, ∗, 1)→ (Y, ∗′, 1′) define
U(f) : XS → YS by U(f) = (f, 1).(5.4)

By Theorem 4.7, U is well defined and now, we have the next result.
Theorem 5.2. U is a faithful functor of Dbck to DHk.

Proof. For any object (X, ∗, 1) of Dbck, by Theorem 4.6 and 5.3, U(X) = XS is a dual
hyper K-algebra and then U(X) is an object in DHk. Now, we show that for any
morphism f : (X, ◦, 1)→ (Y, ◦′, 1′), Uf is a morphism in DHk. Let (x1, y1), (x2, y2) ∈
XS. Now, by (5.4),
Uf((x1, y1) ◦′′ (x2, y2)) =(f, 1)((x1, y1) ◦′′ (x2, y2))
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=(f(x1), y1) ◦′′ (f(x2), y2) = Uf((x1, y1)) ◦′′ Uf((x2, y2)).

Hence, if g : (X, ∗, 1) → (Y, ∗′, 1′) and f : (Y, ∗′, 1′) → (Z, ∗′′, 1′′) are morphisms in
Dbck, then U(g) : (XS, ◦′′, 1′′)→ (YS, ◦′′, 1′′) by U(g) = (g, 1) and U(f) : (YS, ◦′′, 1)→
(ZS, ◦′′, 1) by U(f) = (f, 1) are morphisms in DHk. Now,

(U(f) ◦ U(g))(x, y) =U(f)(U(g))(x, y) = U(f)(g(x), y)
=(f(g(x)), y) = (f ◦ g, 1)(x, y) = U(f ◦ g)(x, y).

Moreover, for 1 : X → X, U(1) = (1, 1) and then for any (x, y) ∈ XS,
U(1)(x, y) = (1, 1)(x, y) = (x, y) = 1FX(x, y).

Therefore, U is a functor of Dbck to DHk. Now, let (X, ∗, 1) and (Y, ∗, 1′) be objects
in Dbck, f1, f2 : X → Y be parallel arrows of Dbck and U(f1) = U(f2). Then, for
any (x, y) ∈ XS, U(f1)(x, y) = U(f2)(x, y) implies that f1(x) = f2(x) and so f1 = f2.
Therefore, U is a faithful functor. �

Theorem 5.3. On Objects of Dbck, F ◦ U = 1.

Proof. For any object (X, ∗, 1) in Dbck by Theorem 4.6, (5.1) and (5.3)

(F ◦ U)(X, ∗, 1) = F (XS, ◦, 1) =
(

(XS, ◦, 1)
δ∗

, ∗
)
∼= (X, ∗, 1). �

Theorem 5.4. For functors 1, F ◦ U : Dbck → Dbck there exists a transformation
τ : 1→ F ◦ U such that is natural.

Proof. For two functors 1 (identity) and F ◦ U of Dbck to Dbck, define a map τ : 1→
F ◦ U as follows:

τ : 1(X)→ (F ◦ U)(X) by τ(x) = δ∗(x, 1).(5.5)
Now, for any dual BCK-algebra homomorphism f : X → X ′, consider the following
diagram:

1(X) τX // (F ◦ U)(X)

1(X ′)
��

1(f)
τX′ // (F ◦ U)(X ′)

��
F◦U(f).

For any r ∈ X by (5.4) and (5.5), we have
((F ◦ U)(f) ◦ τ)x =(F ◦ U)f(τ(x))

=(F ◦ U)(f)(δ∗(x, 1))
=(δ∗(f(x)), 1) = τX′(f(x))
=τX′(1(f)x) = (τX′ ◦ 1(f))x.

Therefore, τ : 1→ (F ◦ U) is a natural transformation. �
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Theorem 5.5. For two functors 1, U ◦F : DHk → DHk there exists a transformation
υ : 1→ U ◦ F such that is natural.

Proof. For two functors 1 (identity) and U ◦F of DHk to DHk, define a map υ : 1→
U ◦ F as follows:

υ : 1(X)→ (U ◦ F )(X) by υ(x) = (δ∗(x), 1).(5.6)

Now, for morphism homomorphism f : X → X ′, consider the following diagram:

1(X) νX // (U ◦ F )(X)

1(X ′)
��

1(f)
νX′ // (U ◦ F )(X ′)

��
U◦F (f).

For any r ∈ X by (5.2) and (5.6), we have

((U ◦ F )(f) ◦ υ)x =(U ◦ F )f(υ(x) = (U ◦ F )f((δ∗(x), 1))
=(δ∗(f(x)), 1)
=υX′(f(x)) = υX′(1(f)x) = (υX′ ◦ 1(f))x.

Therefore, υ : 1→ (U ◦ F ) is a natural transformation. �

6. Conclusion

In the present paper, on any set, we construct a (BE-algebra) dual BCK-algebra,
(hyper BE-algebra) dual hyper K-algebra. We introduce the notion of fundamental
(BE-algebra) dual BCK-algebra via the fundamental relation δ∗ and investigated
some of their useful properties. Moreover,
(i) by every nonempty set, we can construct a (hyper BE-algebra) dual hyper K-
algebra;
(ii) by every nonempty set, we can construct a (BE-algebra) dual BCK-algebra such
that is isomorphic to a fundamental (BE-algebra) dual BCK-algebra;
(iii) By every nonempty set, we can construct a (BE-algebra) dual BCK-algebra such
that is isomorphic to fundamental (BE-algebra) dual BCK-algebra of itself;
(iv) We define functors between these categories and construct a natural transformation
between their combinations and identity functor.

In our future work, we should be get more results in (hyper BE-algebras) dual
hyper K–algebras and its application.
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