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THE HIGHT ORDER LANE-EMDEN FRACTIONAL
DIFFERENTIAL SYSTEM: EXISTENCE, UNIQUENESS AND
ULAM TYPE STABILITIES

AMELE TAIEB? AND ZOUBIR DAHMANI!

ABSTRACT. In this paper, by considering a more general Lane-Emden system of
high order fractional differential equations with two arbitrary orders in each equation,
we obtain some results on the existence and uniqueness of solutions using some fixed
point theorems. Furthermore, we define and study some types of Ulam stability.
Some examples are presented to illustrate the main results.

1. INTRODUCTION AND PRELIMINARIES

In recent years, fractional calculus has attracted great attention. It provides an
excellent tool for the description of hereditary properties of various materials and
processes. Moreover, the fractional differential equations theory arises in many en-
gineering and scientific disciplines such as mechanics, physics, chemistry, biology,
economics, control theory and signal processing, (see [22,23,25]). Many authors inves-
tigated the existence and uniqueness of solutions for nonlinear fractional differential
equations. We refer the reader to [1-5,10-17,21, 26, 33] for more information and
applications.

On the other hand, the Ulam type stabilities for fractional differential problems
are quite significant in realistic problems, numerical analysis, biology and economics.
Some results concerning these fractional stabilities have been obtained in [8,19,20,34].

Let us now introduce some other important research papers related to the Lane-
Emden model which has inspired our work: we know that modeling of several physical
phenomena, such as pattern formation, population evolution and chemical reactions
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gives rise to the Lane-Emden differential problem [9]. Ever after, the Lane-Emden
systems and other related systems have exhausted the attention of many authors
[6,7,18,27,29,30, 35, 36].

Lane-Emden model has the following form:

o (0)+ 52 O+ f(ta ) =g ), te o],

with the initial conditions:

where A and B are constants, f is a continuous real valued function and g € C ([0, 1]),
(see the paper of J. Serrin and H. Zou [32]).

Recently, S. M. Mechee and N. Senu proposed a numerical study of the Lane-Emden
differential problem of fractional order. The imposed Lane-Emden model has a more
importance in applied mathematics, mathematical physics and astrophysics. The
order appeared in two different fractional order as follows [28]:

K Dy (t)+ f(t,y(t) =g(t),

D% () + o5

where t € [0,1], ¥ > 0, 1 < o < 2, and 0 < § < 1, with the initial conditions
y(0) = A, v/ (0) = B, where A and B are constants, f is a continuous real valued
function and g € C ([0, 1]).

Very recently, R. W. Ibrahim [19] imposed the Ulam-Hyers stability for the following
singular variable Lane-Emden equation:

D (D + Z)ut) + f (tu(t) = g (1),

where u (0) = p, u(l) =v,0< o, <1,0<t <1, a>0, and where D7 denotes
the Caputo fractional derivative for v > 0, f is continuous real valued function and
g € C([0,1]).

In this paper, we consider a more general and high dimensional Lane-Emden coupled
system of fractional differential equations. Then, we discuss the existence, uniqueness
and some types of Ulam stabilities for the proposed coupled nonlinear fractional
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system. So, let us consider:
a
(D <D0‘1 n 71) 21 () + fi (o (), 20 (t), o () = g1 (1), te

DP (Da2+%) 2o () + fo (b1 (8) 20 (1) oo 0 () = g2 (8), E € J,

Den (Dan+“t—”> T (8) 4 fo (6,210 (8) 22 (£) - o 0 (8)) = gn (), £ EJ,

>l O =D Ik @) =+ =
k=1 k=1

> D% (0 |—Z\D°‘k+lxk - —Z\Dw 2 (0)] = 0,
k=1

\Dak+l_1$k (1) :0’ k_ 1,2,...,

where | — 1 < <l l—1<oaqp<l,a>0,1eN—-{1}, k=1,2,...,n,n € N*
and J := [0,1]. The derivatives D% and D*, k = 1,2,...,n, are in the sense of
Caputo. For each £k =1,2,...,n, the functions f; : J x R" - R and ¢; : J — R will
be specified later.

To the best of our knowledge, there are no papers that have developed the Lane-
Emden system in multi-variables, with arbitrary orders in each equation.

(1.1)

n

Definition 1.1 (|22,31]). The Riemann-Liouville fractional integral operator of order
a > 0, for a continuous function f on [0, oo[ is defined as:

) i t=5)""f(s)ds, a>0,
JUf(t) =
f(t)a o = 0,
where ¢ > 0, and T (a) := [;° e "2 dx.

Definition 1.2 ([22,31]). The Caputo derivative of order « for a function z : [0, 00) —
R, which is at least 1-times differentiable can be defined as:

Der(t) = oo (ll_ = /0 (t = ) 20 () ds = J=o 0 (1),

for [—1<a<l |eN".

Lemma 1.1 (|22]). For a > 0, the general solution of the fractional differential
equation D*x(t) = 0, is given by

where c; € R, j=0,...,0—1,1=[a]+ 1.
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Lemma 1.2 (|22]). Let o > 0. Then
JOD(t) = (t) + zc]tf

where ¢; €R, j=0,1,...,1—1,l=[a] + 1.
Lemma 1.3 ([22]). Let ¢ > p > 0, g € L' ([a,b]). Then DPJig(t) = J7Pg(t),
t € [a,b].

Lemma 1.4 (|24], Krasnoselskii). Let M be a closed conver and nonempty subset of
a Banach space X. Let A and B be the operators such that

(i) Az + By € M, whenever z,y € M,

(ii) A is a compact and continuous,

(iii) B is a contraction mapping.

Then there exists z € M such that z = Az + Bz.

The following auxiliary result is important to give the integral solution of (1.1).

Lemma 1.5. Suppose that (Gy,),_, € C (J,R), J =[0,1] and consider the nonlinear
system

DP (D 4+ %) 2y (t) =Gy (), te
D2 (D% 4+ @) g, (t) = Gy (), teJ,
L9 (D %) 22 (1) = Ga 1)
DFr (Do 4 ) 2, (t) = G, (), t €,

where | — 1 < Br,a <1, a, >0,k =1,2,...,n, 1l € N*— {1}, with the conditions:

n

13 N0 =3l 0] = = = O =0,

k=1

zn:|Dak$k | —Z|Dak+1xk — _Z|Dak+l ka | 0
k=1

where D+1-1x; (1) =0, k=1,2,...,n, l € N*—{1}. Then, (1.2)<(1.3) has a unique

solution given by (xq,xs,...,z,) (t), where
t T
(t—m)™" /(T—S)B’“_1 aj,
x(t) = Gr(s)ds — —x d
0 = [ s G () ds = Lan(r) | o
0 0
foti—1 ak 1 o (T_S)Blrl ar
1.4 —_— ds — — d
. [ (o +10) / Foy— | ] G St o
0

and k=1,2,...,n



242 A. TAIEB AND Z. DAHMANI

Proof. By Applying Lemma 1.2 to the problem (1.2), we get:

A Br—1
Ak (1 —3) k k ko 1-1
Dak _) — G d _ _ e — ,
( + — ) @ (1) / NN k(s)ds —cg — T T
where k =1,2,...,n, (cg‘?)jzoml_l eR,and I — 1< B <, l € N* —{1}.
Now, applying Lemma 1.2 to the last assertion, yields
t

2et) = / (t;”ak—l / =) (@ ds — “anr) | dr

J (o) I (Br) T
(15) B chtek B chtontl - (I = 1)lef  ponti=t
— clok — cllkt — = c}’iltl_l,

where k=1,2,...,nand (¢f) | €RI-1<ap<lleN {1}
Using Lemma 1.3 and applying the conditions (1.3), we obtain the values of ¢} and

c;»k . Substituting the last condition in (1.5), we obtain (1.4). The proof of Lemma 1.5
is thus completed. [l

Now, let us introduce the Banach space:
Si={(z1,29,...,2n) 2, € C(JR), k=1,2,...,n},
endowed with the norm:

(1,22, sl g = max (el [l flzall)

[z = sup |zk(t)],
teJ
where £ =1,2,...,n.

2. MAIN RESULTS

In this section, we will formulate and establish sufficient conditions for the existence
and uniqueness of solutions to (1.1). Then, we continue our study by imposing some
types of Ulam stability: Ulam-Hyers stability, generalized Ulam-Hyers stability and
Ulam-Heyers-Rassias stability for the problem (1.1).

We begin by list the following hypotheses:

(Hy): There exist nonnegative constants (,uk)j, j,k =1,2,..., n, such that for all
t €[0,1] and all (z1,29,...,2,), (Y1,Y2,.-.,Yn) € S, we have
|fk (tvxl?x% s 7xn) - fk (tay17y27 s 73/71)’ < Z (:uk>j ‘xj - yj| .
j=1
(Hy): The functions f; : [0,1] x R* — R and g : [0,1] — R are continuous for each
k=1,2,...,n,n € N*
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(H3): For all £ = 1,2,...,n, n € N*, the function f; maps bounded subsets of
J x R" into relatively compact subsets of R.

(H,): There exist nonnegative constants (Lg);_, , , such that, for each t € J and
all (271,1’2,.. ) € R",

\fi (tx1, 29, )| < Ly, kE=1,2,...,n

(Hs): There exist nonnegative constants (Mj) such that, for each t € J,
|gk( >| SM/M k_1727"'a

Then, we set the following quantities:
I'og+1)+1 B (o, +1)+1

Tlap+ 0T (+Be+1) " (ap+1— DT (2ap+1—1)

k=1,2...,n,’

(2.1) Fir=

and
n

Zk:Z(Mk)j,k:1,2,...,TL.

j=1
2.1. Existence and Uniqueness of Solutions. The first result is based on Banach
contraction principle. We have:

Theorem 2.1. Assume that hypotheses (Hy), (Hy) and (Hs) are satisfied. Then, the
system (1.1) has a unique solution on J provided that

(22) )\k::Eka+akAk<1, k::1,2,...,n
Proof. Define the nonlinear operator 7' : S — S by

T(x1,m0,...,2,) (t) :=(T1 (x1, 29, ..., 2,) (1),
TQ(xl,xQ,...,xn) t),...., Ty (1,20, ..., 2,) (1), tEJ,

where, for all £ =1,2,.

Ty (21, ..y /tFTakl(Oj%

0

T

% (e (8) = fu (8,21 (8) ..., 20 (5))) ds — %:,ﬁ)) dr

1

takJrl 1 ak 1 A (7_ . S)/Bk_l

0

X (g (5) = fr (5,21 (8) s an (8))) ds — Ly (r ))dT.

T

For
S (M + L) F

(2.3) . M <o<l,

l1—0
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we consider the set B, := {(z1,%2,...,2,) € S;||(z1,%2,...,2,)|¢ < r} and we will
show that T'B, C B,.
For (zq,xs,...,2,) € B, and each k = 1,2,... n, we have
| Tk (21, 2, ...y x,)||

t

Ock 1 ﬁk 1
< Sup/ /
teJ (s
0 0

X gk (s )—fk(s,xl(s),...,.xn(s))—fk(s,O,...,O)+fk(s,O,

+

%Ik(T)’ >d7’

T

pantH—1 ; Olk 1 ﬁk 1
+ su
te‘?rmkH)/ O/ (3

X |gr (s) — fk(Sﬂ?l() al‘n(s)) fk(SO ,0) + fi (5,0,

+ ‘—xk )’)dT.

The hypotheses (H4) and (Hj) allow us to write

Tk (21,22, ..., z,)|
¢

_ (677 1 _ ,Bk_l
Ssup/(tFT> /(T (8) ds | dr (My + Ly + X || (21, 22, . . .

(o)
- T
+ sup/ —;dTClk (21, 22, . .. JIH)HS

I (Br)

teJ
0

ted I' (o)
0
1 T
torti—1 (1 _ T)ak—l / (7_ _ S)ﬂk—l
+ Ssu —dS dT
ey T (ap +1) / I (o) / I (8k)

X (Mg + Ly + Ek: |(z1,72,...,20)|g)

ap+l—1 ! o ar—1
t /(1 T) 1

F(ak) ;dTCLk“($1,$2,...,$n>“s.

4+ su
b T (c + 1)

Therefore, by (H;)

s )lls)
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Tk (21, T2, . - 0) |
< (M + L + Zg [[(1, 22, .. 20) [ )

! ot T Bp—1
k— (1 — 5)P
x(l—i— ak+l>0/ o O/ T (3 ds | dr

1
1 (1 — T)ak_l oy Fl—2
14— T, -~ < dr.
+ak< +F(ak—|—l))“<x1’x2’ T )||S/ T (o) T T
0

Hence,

T3 (21, 22, )|
1 N 1 )
F(a) T (Be+1) T(a)T(Be+1)T (g +1)

S(Mk—i-Lk—i-EkT’) <

1

X /(1 — T)ak_lTﬂde

0

1 a 1 ak+l 2
(1 —7)"" dr.
*””(rmw+r«u cu+z)/ g i
0

Using the Beta function, we get
HTk(:Bl?an <. 7$n)H

1 1
rwwmm+n+m%+wm%wwmﬁo

1
Fog T TarrD) P o -

S(Mk—FLk—i-EkT) (

Xﬁ(ak,@k+1)+akr(

By (2.3), we obtain

Tk (21,22, ..., 2)|| S (L=0)r+Mr=(1—0c+ )7

and
Tk (x1, 20, ..., 2,)|| <,
where k =1,2,...,n
Thus,
T (1,22, ...,2,)||g <7

We need to prove that T is a contractive.
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For (zq,x9,...,22), (Y1,Y2,.--,yn) € S and for all £ € J, we have:

Tk (x1, 22, ...y 20) — Tk (Y1, Y25 -« - Yn) ||
¢

<o [/ o
X fe (5,1 (5) oo (8)) = (501 (5) - (5))] s
+ 2 () —yk<r>|>df
i iﬁ?rﬁ: l:o / - r <2> (/ s r w)E)
XU fie (5,21 (5) oo (5) = Fic (5,91 (5) - () |ds
+ = fa(r) —yk(T)]>dT.

Thanks to (H;), we can write

|| Tk (fL‘l,.ﬂUg,...,fL‘n) _Tk (yl:yQa"'7yn)||
t

(t—7)™! / (r— )%
< d d E - 5 - s bn T Yn
< stlelg)o/ F(ak) F(ﬂk) S T2 H(Ilfl Y1, T2 — Y2 z Y )Hs

t

t—7)""1 ponti=1
+ su ——————dra T — Y1, L9 — Y2y .-y Ty — YUn +sup————-+-
p/ oo = e s )l + supr——

ak 1 ” (T_S)Bk—l
ds | dr2 — — e Ty — Un
X/ F 0/ F(ﬁk) S T kH(371 Y1, T2 — Y2, y L Y )Hs

tak+l 1

(1 Dék 1
+ su —dTa yTo — Yo,y T — Yn)|l e -
up aw/ — N [Crr— )l

Consequently,

||T/€ (Il)x%”'axn)_ Tk (ylay27"'7yn)||
< E F(Oék+l)+1

> 2 F(ak+l) ||(5L“1—917$2—927---,$n—?/n)||5
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IS Sl A L
><0/ T {og) O/ T 05 ds | dr
(2.4) + ak%

ap—1
v / (1 — T) Tak+l—2d7_
I (ou)

||(x1 — Y1, T2 — Y2, -, Tn —yn)Hs

<M1 =y, — Yo, 20 — Un) g

which implies that

”T<x17x27' .- 7xn) - T<y17y27' .. 7yn)”S
< max (A, A, M) [[(1 =y, 22 — v, - T — )|l

where, k =1,2,...,n.
Then by (2.2), T' is contractive. O

Theorem 2.2. Assume that the hypotheses (H;),_, 5 - and the inequalities

Ak

2.5 Chpim — 2k 1,
(2:5) P T (a1 +1

k=1,2...,n,

are satisfied. Then system (1.1) has at least one solution on J.

Proof. On Bpg, such that

R> (M + L) F &

—_— A 1
= 1—akAk ) Qg k?é )

we define the operators P and () as follows:

P(zy, o, ..., x,) (t) =

(P (1,22, xn) (1), Pa (21,29, ..., y) (), ..., Pu (21,22, ...,2,) (1)),
Q(x1, x9, ..., 2,) (t) =

(Q1 (1,29, ..., Tp) (£), Qa2 (T1, T2, ..., y) (), ..., Qn (1, T2, ..., x,) (1)) .

For each £k =1,2,...,n,

Py(m1, 29, . .., 2,)(t) :=

t
ag

et T w
0/ [ (ag) 0/ T (B) (9k (8) — fe(s,1(8), ..., 2, (8)))ds Txk:(T) dr,

and
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o tak-l-l—l ; (1 o T)Oék—l
Qk(xl,xg,...,:cn)(t) = — )/ T (

[ (ag+1 / (o)

[

X (gr (8) = fe(s,21(8),...,x,(8)))ds — %xk(7)> dr.

-
For (zq,29,..., %), (y1,Y2,---,Yn) € Br and for each k = 1,2,...,n, we can write

”Pk (x17$27 cee 73:71) + Qk(y17y2> S 7yn)||
t

(t—7) [ [ (r—s)%
fﬁ?! u%><! L ()
% (1gi ()] + |fi (8,21 (5), 22.(5) ., 0 (5))]) s + |

1

N sup tak+l 1 / ak 1 /T (7_ _ S)ﬁk_l
teJF Oék—i-l F P(ﬁm

0

(7')‘ >d7’

X@Mﬂ+W®M@%m@ww%@Dd&w—% Dm.

Using (H,) and (Hs), we obtain

||Pk([)’)1,ﬂ72, s w'En) + Qk(yl:y% s 7y'rl)”
t

(t—7) 7 [ [ (r— s
< StlelLI])O/ T (o) (O/ NED ds) dr (M + Ly)

t

teJ [ (o)
1 T
toc;ﬁ-l 1 ak 1 (7__8>/3k—1
+ —————ds | dr (My + L
s [ O (/ LLaVA PRITEER

-+ sup

ta,ﬁ-l 1 (1 o T)ak 1 1
tes I (o + 1) /

—d oyl
Tl el v, o)l

And then,
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| Pe(1, o, .oy Tn) + Qk (Y1, Y2, - - Yn) ||
N ) o Nt
§<Mk+Lk)<1+F(ak+l))/ T (ox) / CA N

1
ozk 1
R(1+ 7
+ o < Oék + [ ) / P T
0

1

My + Ly, M + Ly, _7—0%*17-/31@ .
S(r(ozk)r(ﬁwl)+P(oak)r(ﬁzmt1)r(oé,€+1))0/(1 ) d

+ arR (F (Lk) + 7 o) Fl(ak m l)) 0/(1 — )T g

Such that R > (My + L) Fy. /(1 — agAy), Ay # 1, we have

['ap+1)+1
' + 1) T (g + B+ 1)
(T +1)+1)
(g +1—1)T 204 +1—1)
= (Mg + L) Fp + axAR < R.

| Pe(x1, o, .y 2n) + Qr(yr, 2, - un) || < (M + Ly)

+ akR

Consequently,
||P (x17x27 s 7'T'rl) + Q <y17y27 s 7yn)||S S R.

Thus, P ($1,$2, s 7xn) + Q (yhy?» s 7yn) € BR~
We proceed to prove that () is a contraction mapping in Bp. For
(x1,m9,...,xy), (Y1,Y2,...,Yn) € Br and for each k =1,2,... n, we obtain:

HQk(ﬂCl,@,--- )—Qk (ylay27"-7yn) H
fantH—1 ; ak 1 (T_S),Bk_l
= T a1 0/ I (a / T (Be)
X ‘fk(S,lCl (3)7...,1’”( ))‘fk(&@/l (3)7'--7%(3))‘615
+ = Jan(r) - n(7)

Using (H;), we get

||Qk(xlax2a s 7£En) - Qk <y17y27 s 7yn) ||
g

< — 2 (g — Yo T — Un
>~ F(Oék+l) ||(ZL‘1 Y1, T2 Y2, » L Y )HS
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IS Sl G L
X / / ds | dr
' (o) I (Br)
0 0
a,
_l’_ -

1
1-— T)a’“fl

1
2, ||(i171—y1 To— Y2, ... xn_yn)HS/ -1
< ) ) ) 1_7_ak Tﬁde
S ) ) YD AR Rl AL

1
L0 (@1 — 1,22 — Y2, .., 20 — Un) g / (1= )t g

Yk ||($1 — Y1, T2 —y2,~--7$n—yn)

||55(Oék;5k +1)

ag H(l’l—y1,x2—yz,---,a¢n—yn)“5
g, o +1—1).
Then,
‘|Qk(x17x27---7xn)_Qk(y17y27'--7yn)”
< Zk”('xl_ylva_y%"'axn_yn)HS
- [(op + 07T (g + B+ 1)
+akF<ozk+l—l)ll(xl—yl,xz—y2,..-,xn—yn)lls
( Xk Qg )
< +
T\ + )T (apg+8e+1) (g +1—1)T (20 +1-1)
X H(xl_y17x2_y27---7xn_yn)”S'
Thus,
HQ('TI;x27---7'Tn)_Q(y17y27-"7yn) HS
g1r£g§10k||($1—y1,$2—yzy---,$n—yn)Hs-

Thanks to (2.2) and (2.5), we conclude that () is a contractive.

The hypothesis (Hs) implies that P is continuous. Then, for all (zy, 2o, . ..

Bpr and each t € J, we obtain

| Py (21,22, ..., 2,) ||
t

<o [ T (/e

( -
||($1—y1,x2—yg,...,xn—yn)HS/WTaw dr
0

,Tp) €
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X (|gk (8)] + | fx (8,21 (5) ,22(8) .-y xn (8))]) ds + ‘%xk(T)DdT

t

— )t TT—sﬁ’“_l
(2.6) gstg?/ (t r(ozk) /( F(ﬁl) ds | dr (M;, + Ly)

t

(t B T)ak_l ap—I1—2
+stuIJ) WT dray ||(x1, 22, ..., 20)] g
S

1 1
M.+ L
< k+ k /1—7’0"“ ! Bde—l—akR / )R Vraw—l=2g.
[(ow) T (B +1)
0 0
My, + Ly, F(Oék—Fl—l)

+ akR.

T +6e+1) TQRap+1-1)
And by (2.6), we get
HP<I17'1:27‘ s an)HS S R.

Therefore, P is uniformly bounded on Bg. Furthermore, we show that P is a compact
operator in Bg.
Let 0 <t <ty <1and (z1,29,...,2,) € Bg, then

||Pk ([El,ZL‘Q, Ce >$n) (tg) — Pk ({lfl,$2, Ce ,Ilfn) (tl) ||

to t1

B B My, + Ly,
< to— ap—1 ﬁkd _/ to — ap—1 ﬂkd k
_sup/(1 T) ToRdT (tz —7) T Tp(ak)r(ﬁk—f—l)

teJ
0 0

to t1

R - —
+ ak—SUp / (tg o T)ak 1 TakfledT . / (tl - T)ak 1 Takilisz
r (Oék) teJ / /

My, + Ly, <tgk+ﬁk B t?kwk) n apRT (o +1—1) <t2ak+l72 B ﬁaﬁzq) .

T T(ar+ Bt 1) T (200 +1—1)
Thus,
||P (x17x27 s 7xn) (tQ) - P (Il,.fg, s JITL) (tl) ||S
< max My + Ly (taﬁﬁ’“ — ta”ﬂk)
— 1<k<n]’ (Ozk —+ Bk + 1) !
arpRU (o +1—1) 1 20,119 200, +1—2
2.7 <t w2 _ g2 ) .
27) S T oy 1 1= 1) 1

The right-hand side of the above inequalities (2.7) is independent of (z1,x9,...,%,)
and tend to zero as to — t;. Therefore, P is equicontinuous. Furthermore, by the
hypothesis (Hj3), P is relatively compact on Bg. By Arzela-Ascoli Theorem, P is a
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compact operator on Bg. Then thanks to Lmma 1.6, we can state that (1.1) has at
least one solution on J. Theorem 2.2 is thus proved. [l

2.2. Ulam Stabilities. We introduce the following definitions.

Definition 2.1. The Lane-Emden fractional system (1.1) has the Ulam-Hyers stability
if there exists a positive constant K with the following property:
For every € > 0, for any ¢ € J, and (x1,z9,...,x,) € S of (1.1), with

a
‘Dﬁk (Do‘k n 7’“) 2 (8) + i (b0 (1), 22 (8) 1y n (8) — g (B)] < e,
and k = 1,...,n, then, there exists a solution (y1,¥s,...,y,) € S that satisfies

(2.8) D" <Dak+%> e O+ St (8),92(8) -y (D) =g (t), k=1,...,n,

and

> lue O = Yk 0 =+ =3 o™ 0)

=S DM ()] = 3 Dy (0)] = - = 3 DRy (0)] = 0,
k=1 k=1 k=1
where D*+i-1y, (1) = 0, such that,
(21— Y1, 22 — Yo, . ., Ty — Yn) || g < K.

Definition 2.2. The system (1.1) is Ulam-Hyers stable in the generalized sense if there
exists ¢ € C'(RT,RT), such that ¢ (0) = 0 and for each € > 0, and for each solution
(z1, T, ..., 3,) € S of (1.1), with [DP(D* + %)y, () + fi(t, z1(t), 22(t), ..., 2a(t)) —
gr(t)| <€, and k =1,...,n, there exists (y1,ys,...,yn) €S of (2.8), with

||(1'1 — Y1, T2 —Y2,...,Tp _yn)HS < 90(6)'

Definition 2.3. The system (1.1) is stable in the sense of Ulam-Hyers-Rassias if there
exist ¥ € C' (J,R") and some positive p;, such that for each ¢; > 0,7 =1,...n, and
for all solution (z1,xs,...,x,) € S of the inequalities

(D% (D7 + ) 21 0+ £ (baa (0,22 (1) () = 0 ()] < W (1)

o) D% (D% 4 2 )2 () + fo (b (1), 22 (8), o0 (1) = 92 ()] < ¥ (1),

D7 (D7 + 5 ) () 4 fu (t1 (8), 22 (1) (1)) = 90 ()] < W (1),

there exists (y1,¥2,...,yn) € S of (2.8) that satisfies

o =51, 22 =g, 20 =)l S pe¥ (1), pi:= maxpp, €:= maxe.



THE HIGHT ORDER LANE-EMDEN FRACTIONAL DIFFERENTIAL SYSTEM 253

Remark 2.1. An element (xy,xo,...,x,) of S is a solution of (1.1) if and only if there
exists hy : [0,1] = R, k=1,2,...,n, such that

(1) |hx (t)] < €, t €[0,1], (€& > 0, and is sufficient small), and

(i) D% (D + %) 3, (t) + fro (21 (8) 22 (), ... 20 (8) = g (8) + hu (£), ¢ € [0, 1],

Theorem 2.3. Under the assumptions of Theorem 2.1, if the inequalities

(2.10) sup ‘Dﬁk (Dak n %) o (t)‘ > (My, + Li) F o+ (SeF i+ aphp)r, S < 1,

teJ
are satisfied, then the Lane-Emden problem (1.1) is Ulam-Hyers stable in S.

Proof. Thanks to Theorem 2.1, we can state that the problem (1.1) has a solution
(y1,Y2, ..., yn) € S that satisfies (2.8).
Now, suppose (z1, T, ...,x,) € S is a solution of (1.1), where

a
(2.11) ‘Dﬁ’“ (D“k + f) zp () + fi (G (), 22 (8) 5. 2n (1) — gn (8)| < €
According to assumptions of Theorem 2.1, we have
(2.12) |z (8)] < (Mg + Li) F e+ (ZeF e +apAp)r, k=1,2,...n,

where €, > 0.
Then, by (2.10) and (2.12), we obtain

Qg
. k- -~ k — k- .
(2.13) sup |k ()| <sup’D5 (Daw t)x (t)]

teJ teJ

Using (2.13), we get

suplay (t) — yx (1) |
ted

< sup ’D’B’“ <Da’“ + %) (z (t) —yx (1))

teJ

< sup
teJ

D <Do‘k v %) 2 (1) — g () + fu (b0 (), 20 (1), o (1)
— (D (D™ + 2 ) g () = g0 () + Fi (o ()92 1) -3 (1)

_fk(tuxl(t)7x2(t)7”"mn(t))+fk:<t’y1(t)va(t)""ayn(t))‘

Using (2.8) and (2.11), we obtain
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sup g (1) =y (D] < €x + (i) 21 () = 91 (O + -+ (), [0 (8) =y (1)]

teJ
n
< e+ 3 ) s ()= 0
n
< @c+-zi;(uk)jf§fg;|xk(t)—-yk(tﬂ-
Hence,
1
1003, o =l = e = g
Therefore,
(1 —y1, 22 — Y2, .- 20 — Yn)|lg < Juax wyey, = = Ke, e = uax .
<k<n <k<n

Since Y, < 1, we get wy > 0, that is K is a positive constant.
From (1.4), we see that

me=2%@bm=2M“M=waw)

_ Z | D+1g(0)] = _ Z | Dos+=2g, (0)] = D¥+-1gy (1) = 0.
k=1
Then,
(21 =y, 02 — Yo, .. T — ) || g < Ke.
Therefore, the Lane-Emden fractional system (1.1) is Ulam-Hyers stable. U

Remark 2.2. Taking ¢ (€) = K¢, we conclude that the problem (1.1) is generalized
Ulam-Hyers stable.

Theorem 2.4. Assume that:

(i) The assumptions and the condition (2.2) of Theorem 2.1 are satisfied.
(ii) There exists a function ¥ € C([0,1],R,) that satisfies (2.9).

Then, the fractional system (1.1) is Ulam-Hyers-Rassias stable in S.

Proof. Let (x1,2,...,x,) € S be a solution of (1.1). In virtue of Remark 2.1 and by
some easy calculations, we get:

Ek\If (t)
— < =
e [loe = yill < max 5700 = max pre O (#).
Thus,
(21— y1, 22 — Yo, - -+, Tn — Yn) ||l g = max |ze — yrll < pe¥ (1),
where,

p = max pi, €= Iax €.
1<k<n 1<k<n
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The Condition (2.2) implies that pp = 1/(1 — A\x) >0, k =1,2,...,n. Hence, (1.1) is
Ulam-Hyers-Rassias stable. 0

3. APPLICATIONS

In this section, we present some examples to illustrate some applications of the
main results.

FExample 3.1. Consider the following system:
D} (Dg + ?) 1 (t)
|.CE1 (t) + 29 (t) + X3 (t) + 24 (t)‘ . f
Im2et (14 |1 (8) + 22 (t) + 23 () + 24 (1)) 27
12 s 10.5 1
D (D3 + T) xo (t) + —327T(t+ 0
y (sin (21 (1)) + sin (22 (t)) + cos (x3 (1))
9pt+1
D> (DT +¥> :cg(t)+t21+1
, €08 (21 (t)) + cos (z2 (t)) 4 cos (x5 (t)) + cos (x4 (t)) 3t
4rre? 2’
2
Aottt
|22 () + @3 (1) + 24 ()] ) _t
273 (14 |zo () + 23 () + 24 (2)]) 4’
|21 (0)] + [2 (0)] + |5 (0)] + |4 (0)] = 0,
)

24 0)] + I (0)] + |} (0)] = I )] = 0,

7 (0)] + |« (0)] = 0,

+ sin (x4 (t))) =t tel0,1],

8
(3.1) : (Dlsl L 3x10

73 (0)] +

Dy (0)] + | DSz ()| + [D s (0) + | DF s (0)] = 0,

Diz, (0)( + ’D%la:g (o)] + ‘D%xg (0)‘ + (D%m (0)( —0,

| Diwy (1) = D52y (1) = Dias (1) = D5 ay (1) = 0,

In this example, we have: n =4, 1 =3, 51 =9/4, fs = 12/5, 53 =5/2, B, = 7/3,
) = 5/2, Qg = 8/3, 3 = 11/4, Qy = 11/5, a; = 5, a9 = 105, as = 152, a, = 3 X 108,
J =10,1].

It is clear that, for all ¢ € [0, 1] and (1, 9, 23, 74), (Y1, Y2, Y3, ys) € R, we have:
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|f1(t x1,$2,x3,$4) - fl (t7y17y27y37y4> |

1 1
‘1—Z/1|+ |$2 2/2“" |x3—y3|—|— |56’4 Yal

< 9 —
|f2(t,951,$27$3,$4) f2(757y1,y2,y37y4)|
1
< - _ - — i
S Gire |21 y1|+647re|x2 y2|+64 |23 y3|+ |$4 Yal
| fa(t, z1, 20, 23, 24) — f3 (t,y1,Y2, Y3, Ya) |
< Tre —3/1|+ |$2—?/2 Y3 — Y,
\f4(t,931,332,$3,3?4) f4 (t, yl,yg,yg,y4)]
< |$1 — U — Y2 Y3 — Yal,
and
1 3 1
sup g1 (1)] = 5, suplg2 (t)| =1, suplgs(t)| =5, suplga(t)] = -,
teJ 2" eJ ted 27 g 4
1 2e +1
su t,T1, %9, T3, Ty)| = —=, SU t,T1,T9, T3, Tq)| = ,
te?‘fl( 1, T2, T3, Tq)| 92 te?\fz( 1, T2, T3, Tq)| 6dme
1 213 + 1
t = — t = .
ig?|f3< ,$17$2,$3,$4)| 47'('62’ StlelLI])|f4( ,$1,$2,$3,$4)| 87T5€
We can take
1
<U1)1 = (Nl)z = (Nl)g = <U1)4 = ﬁ;
1
(U?)l = (NQ)Q = (M2)3 = Gdne’
1
(M2)4 = 32_7r’
1
(,US)l = (/L3>2 = <N3)3 = (,U3)4 = Ao’

1
_ —9 ]
(H4)1 ~ AnZe (M4)w

where ¢ = 2, 3,4. In addition

Y1 = 0.045032, ¥, =0.015436, X3=0.043079, ¥, = 0.009769,
F1 = 0012936, Fo=0.007538, F3=0.005478, [ 4= 0.018669,
Ay = 0.016461, A, =0.011025, As=0.008978, A, =2.03516 x 10~'2.

Furthermore, we have:

A1 =0.082888 <1, A =0.115879 <1, A3 =0.136702 <1, A4 =0.000793 < 1.

Then, by Theorem 2.1, the fractional coupled system (3.1) has a unique solution on
[0, 1].
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To illustrate the second main result, we consider the following example:

FExample 3.2.
(10 (7 102 |z (1) + 22 (1) e
D% (D2 + — t =" 4t telol
Ho3+ 50 o0+ s oy — 2 €00
s 5% 103
D% (Di + Xt )m (t)

! 2
—l—m (cos (z1 (t)) + cos (z2 (1)) =12, t€]0,1],

(3.2) 4 121 (0)] + [2 (0)] = |2 (0)] + |25 (0 )I =0,

7 0] + |2 )] = |5 O] + |2 @] = 0,
D%xl(O)‘+‘D4x2 ‘—‘Dm ‘+‘D4x2 0)‘:0,
D%, (0)’ +| D%, o) =0,

| D21 (1) = D% ay(1) =0,
For this example, we have: n =2, 1 =4, p; =10/3, 55 =22/7, oy = 7/2, as = 15/4,
ar =102, ay = 5 x 10%, J = [0, 1].

We see that, for all ¢ € [0,1] and (1, 72), (y1,72) € R?, we get:

1 1
|f1(t,x1,w2)—fl(t,y1,y2)|§€—6|$1 y1|+ T2 — Y2,

1 1
|fo (T, 21, 22) — fo (L1, 92)| < o2 21 — ] + 192 22 — Yol
and
e+ 2
suplgy (6)] = <5 suplgs (1) = 1,
ted teJ
(0] = - o (t)] = —
su = — su = .
te? ! b’ te}l) ? 1272
We can take:
1 1
(1)) = () = - (2); = (p2)y = 192

In addition:
1 = 0.004958, X5 = 0.016887.

Moreover, we obtain:

C; =0.000042 < 1, C% =0.000654 < 1.

The functions f : [0,1] x R* — R and gy, : [0,1] — R are also continuous. So, by
Theorem 2.2, the system (3.2) has at least one solution on [0, 1].
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