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HESSIAN DETERMINANTS OF COMPOSITE FUNCTIONS WITH
APPLICATIONS FOR PRODUCTION FUNCTIONS IN
ECONOMICS

M. E. AYDIN! AND M. ERGUT?

ABSTRACT. B.-Y. Chen [7] derived an explicit formula for the Hessian determinants
of composite functions defined by f = F (hy (1) + - - - + hy, (z5,)) . In this paper, we
introduce a new formula for the Hessian determinants of composite functions of the
form

f=F(hi(xz1) X X hy(x,)).
Several applications of the new formula to the well-known Cobb-Douglas production
functions in economics are also given.

1. INTRODUCTION

Let f:R" — R, f = f(z1,...,z,), be a twice differentiable function. Then the
Hessian matriz H (f) is the square matrix ( fmx]) of second-order partial derivatives
of the function f. If the second-order partial derivatives of f are all continuous in a
neighborhood D, then the Hessian of f is a symmetric matrix throughout D (cf. [7]).

For applications of Hessian matrices to production models in economics, we refer
the reader to B.-Y. Chen’s papers [7, 8]. In addition, the Hessian matrices have an
important geometric interpretation as following.

Let f = f(z1,...,2,) be a twice differentiable real valued function. Then the
Hessian matrix H (f) of f is singular if and only if the graph of f in R"*! has null
Gauss-Kronecker curvature [7].
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On the other hand, the bordered Hessian matriz of the function f is given by

j{B (f) _ f%l j;?ml e f;%xn

facn fxnxl e fxnxn
where f,, = g—i, foiw; = aZQaJ;j foralli,j € {1,...,n}.

The bordered Hessian matrices of functions have important applications in many
areas of mathematics. For instance, the bordered Hessian matrices are used to analyze
quasi-convexity and quasi-concavity of the functions. If the signs of the bordered
principal diagonal determinants of the bordered Hessian matrix of a function are
alternate (resp. negative), then the function is quasi-concave (resp. quasi-convex).
For more detailed properties see [4, 12, 13, 14].

Another example is the application of the bordered Hessian matrices to elasticity of
substitutions of production functions in economics. Explicitly, let f = f (z1,...,z,)
be a production function. Then the Allen’s elasticity of substitution of the i—th
production variable with respect to the j—th production variable is defined by

(xlf:pl + x2fx2 + ct + «Tnfmn) ‘{}CB (f)zj

T, det HB (f)
for x = (z1,...,2,) €RY, i,j € {1,...,n}, i # j, where HP (f)y; is the co-factor of
the element f,,, in the determinant of H” (f) [15, 17]. The authors [2, 3] called the
bordered Hessian matrix H? (f) by Allen’s matriz and det HZ (f) by Allen determi-

nant.
Let f be a composite function of the form

(1.1) F(x) = F (hy (1) % -+ % hy ().

In [3] for the composite functions of the form (1.1), an Allen Determinant Formula
was obtained as follows

NS s T S VNS AN S VPR S TR
e - () () - () () () - ()

A (x) = —

J=1

where h;:% and F = F (u) for u = hy (x1) X -+ X hy (2,,) .

In this paper, we obtain a new formula for Hessian determinants H (f) of composite
functions of the form (1.1). Several applications of the new formula to production
functions in economics are also given.

2. PRODUCTION MODELS IN ECONOMICS

In economics, a production function is a mathematical expression which denotes the
physical relations between the output generated of a firm, an industry or an economy
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and inputs that have been used. Explicitly, a production function is a map which has
non-vanishing first derivatives defined by

R — Ry, f=f(a,...,2,),

where f is the quantity of output, n are the number of inputs and x4, ..., x, are the
inputs.

A production function f (z1,...,xz,) is said to be homogeneous of degree p or p—
homogenous if
(2.1) f(tey, ... taxy) =t°f (x1,...,2,)

holds for each ¢ € R, for which (2.1) is defined. A homogeneous function of degree
one is called linearly homogeneous. If p > 1, the function exhibits increasing return
to scale, and it exhibits decreasing return to scale if p < 1. If it is homogeneous of
degree 1, it exhibits constant return to scale [5].

Many important properties of homogeneous production functions in economics were
interpreted in terms of the geometry of their graphs by [5, 9, 10, 18, 19].

In 1928, C. W. Cobb and P. H. Douglas introduced [11] a famous two-factor pro-
duction function

Y =bLFCF,

where b presents the total factor productivity, Y the total production, L the labor
input and C' the capital input. This function is nowadays called Cobb-Douglas pro-
duction function.

The Cobb-Douglas production function with n—factor, also called generalized Cobb—
Douglas production function, is given by

Qn

f(x) =nyat g,

where 7y is a positive constant and «q, ..., «, are nonzero constants [6].

3. HESSIAN DETERMINANT FORMULA

Let us denote the first derivative of h; (x;) with respect to z; by a prime (') and
that of F'(u) with respect to u by a dot ().

Throughout this article, we assume that hq,...,h, : R — R are thrice differen-
tiable functions with A (z;) # 0 and F': I C R — R a twice differentiable function
with F'(u) # 0 such that I C R is an interval of positive length.

The following provides an explicit formula for the Hessian determinant of the com-
posite function given by (1.1).
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Theorem 3.1. The determinant of the Hessian matriz H (f) of the composite func-
tion f = F (hy (z1) X -+ X hy, (x,)) is given by

det (3 (f)) = (w)”{(%) (Z_Z)
o R @)

j=1

h// —

where h’ =

F:—uandF d—FfOTu=h1(I1)><"'><hn(xn)-

dx ’ dx2 ’

Proof. Let f be a twice differentiable composite function given by

(3.2) f(x) = F(hy(z1) X -+ X hn, (2))

for x = (x1,...,x,) €R". It follows from (3.2) that

of M o2F W, -
. = = = < <
(33) o= gy = b fun, = 5e = R [F + uF] 1<i#j<n,
and
an h// . h/ 2 -

By using (3.3) and (3.4) the determinant of Hessian matrix H (f) of the composite
function given by (3.2) is

det (F(f)) =
" . / 2 . /AN M. . /N /BN . .
1y F+( b i [FauB] [P aaB] e ey [F sl
N} ] " . ) / 2 . N .
%u Foub|  Bub+ (1) wF b |F+uf] e [P+ ub|
- 3 ~ - 2
h/ h{ . .. h/ h/ . .. h . h{ 2 .. h/ h;q’ . ..
ﬁu _F+uF_ ﬁu _F —i—uF_ hiSuF—i— (ﬁ) Tl SR %Lhnu [F+uF]
IV r ‘. o] /BN r .. o] IV . 17 . . ’ 2 .
Zi—Z:u _F+uF_ Zi—Z:u _F—i—uF_ ZiZZu [F—i—uF} Z—:uF—i—(Z—:) u?F

Now we apply Gauss elimination method for the determinant from the last equality.

. hih
We replace the second column by second column minus 77 e
1
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then we derive

det (F(f)) =
W 2 oom mby, (RN s R K n,
Wb+ ( R G RT Jaa W [P+ ul|
R A hiy hiyhl,
Pk | F o+ ul B)ub g Py uF} e | P+ ul|
L _F +ub 0 Mgy (1) ek W [F 4 o |
AN} '.. o] AN} " : . ’ 2 .
ZiZZuF—i—uF 0 hh [F—l—uF} Z_nuF+<Z_:) W2 E
By similar elementary transformations, we get
det (F(f)) =
h” . 2 . h h/ h/ / . h h/ h/ / . h h{n hl / .
R ( > el _h’ihi (h_i) ul’ —hihi (h_i> LU hihn (ﬁ) ul’
! ] / / .
lezu _F+uF_ (Z—;’) uF 0 0
My [F 4wl 0 %Y 0
mu I +u | s U NN
AN r .. .7 . ’ , ‘/ .
Hin gy Frul 0 0 (%) uE

After calculating the determinant in the previous formula, we obtain
n b (R A ! h, ! AR
det (¥ (f)) = <uF) i (@) (h—g) <h—n) + (uh)"
hy ho hs I, hy ho hs I,
) ) ) ()
++ — = — e LA
(hl ho h hn,
N 0 A A AU
+(" (F) ) \ha) \hs o
AN AW AN AN AN AN ARNNTAY
hy hs hs I, hy ho hs hon,
AN AN AYENLAS
Y ) ()
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. : AN AN AN TAY n\
After adding and substracting <uF> (—1> <—2> (—5> <—"> we deduce

det (3 () = (uF)" {H (’;—)+

() S0 G () Gy ()

7j=1

This completes the proof of the formula (3.1). O

4. CHARACTERIZATIONS OF CD PRODUCTION FUNCTIONS

Next, we provide the following characterization of the generalized Cobb-Douglas
production function with constant return to scale via the Theorem 3.1.

Theorem 4.1. Let F (u) be a twice differentiable function with F (u) # 0 and let f
be a composite function given by

(4.1) f=F(@1+aQ)" x - x (20 +G)™)

for some constants o, ;. The Hessian matriz H (f) of f is singular if and only if
either

(i) at least one of the ay, ..., o, vanishes, or
(ii) up to suitable translations of x1, ..., T, f is a generalized Cobb-Douglas pro-
duction function with constant return to scale.

Proof. Let us assume that the Hessian matrix of f is singular. By the hypothesis of
the theorem, we have h; (x;) = (z; + ¢;)® . Thus we get

() = oy ( + GV, R () = ay (o — 1) (@ + )V
for all 7 € {1,...,n}. After applying the formula (3.1), we write

(42) 0= (up)’ ﬁ(a:] + ) { ( H Z%) TE (Z%> }

where u = (z1 + ()™ X -+ X (2, + ()™ . Since u # 0 and F' # 0, the equation (4.2)
reduces to
(4.3) - -1+ iaj + uéiaj :

=1 Fia

7j=1 LC]—’—C]

From the equation (4.3), it is easily seen that either at least one of the aq,...,a,
vanishes or

(4.4) 1— iaj = uiiaj.
s i3
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For (4.4), if F' is a linear function, then Zn 5= 1, which implies that, up to suit-
j:

able translations of x1,...,x,, f is a generalized Cobb-Douglas production function
with constant return to scale. If F' is a non-linear function, then by (4.4) we derive

1-— iaj
j=1 1

i
- — =0,
F U
2%
j=1
which implies that
1)
4.5 F=——(u)"+¢,
(15) @)

where 7, are nonzero constants and € some constant such that
n
1-— E Q;
=1
=
2
=1

Combining (4.1), (4.5) and (4.6) gives that, up to suitable translations of xy, ..., z,,

f is a generalized Cobb-Douglas production function with constant return to scale.
Conversely, it is straightforward to verify that cases (i) and (ii) imply that f has

vanishing Hessian determinant. U

(4.6) gl

Theorem 4.2. Let F' = u" be a power function such that r # 0,1 and let f be a
composite function given by

(4.7) f=F(hi(x1) X X hy(2,)) .

The Hessian matriz H (f) of f is singular if and only if either

(i) f = F (ye™®1to2®2 5 ha (13) X -+ X hy, (x,,)) for nonzero constants v, aq, az,
or

(ii) up to suitable translations of x1,...,x,,f is a generalized Cobb-Douglas pro-
duction function with constant return to scale.

Proof. Let us assume that the Hessian matrix of f is singular. Then we have det (H (f)) =
0. From the hypothesis of theorem, we get

(4.8) F=ru " and F=r(r—1)u 2
After substituting (4.8) into the formula (3.1), we derive

n h/- / n h, / h/l» / h/- 2 h/- / h, /
L9) 0= _z) . (_1) ( J—l) (_a) (a_+1> (_n) ,

J

For (4.9) we have two cases:
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h

/ / ’ !
Case (a): At least one of (h_i> ey (Z—Z) vanishes. Without loss of generality,

we may assume that

AN
4.10 — ] =0.
(4.10) (hl)
Then from (4.9), we find

o (8 () () ()

Without loss of generality, we may assume from (4.11) that

(4.12) (Z-i)l = 0.

After solving (4.10) and (4.12), we obtain h; (z;) = v;e*%, (j = 1,2) for nonzero
constants 7;, «;. This gives the statement (i).

! / / /
Case (b): (%) e <Z—Z> are nonzero. Then from (4.9), by dividing with the

/ / / /
product <%> (Z—Z) , We write

) )

(4.13) 0=1+r %—F"'—FL
1

(i)

Taking partial derivative of (4.13) with respect to x;, we find

AN NICAYZAY
4.14 2( (= =(=2) (=) .
29 (G)) =G G)
By solving (4.14), we get
(4.15) hy () = 75 (x5 + G)™
where v;, ; are nonzero constants with 2?21 o = %, and ¢; some constants. Com-
bining (4.7) and (4.15) gives the statement (ii).

Converse is straightforward to verify that cases (i) and (ii) imply that f has van-
ishing Hessian determinant. 0

5. FURTHER APPLICATIONS
We provide the following as further applications of Theorem 3.1.

Theorem 5.1. Let f be a twice differentiable composite function given by

f:ln(hl(xl) Xoeee th(l'n))

The Hessian matric H (f) of [ is singular if and only if at least one of the
hy (z1), ..., hy (x,) is of the form ~;e®® for nonzero constants v;, c;.
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Proof. Let assume that the Hessian matrix H (f) of f is singular. Then under the
hypothesis of the theorem, we get

F(u)=Ilnu, F(u)=—-, F=—-=.

/

n !/
After applying the formula (3.1), we derive 0 = H <Z—3> . Because of h; (z;) # 0, at

j=1
R\ . D . .
least one of (h—]> vanishes which implies that at least one of h; is of the form ~;e®®s
J
for nonzero constants v;, a;.
Converse is easy to verify. 0

Corollary 5.1. Let f = F (hy (x1) X -+ X hy, (z,,)) be a twice differentiable composite
function. If at least two of hy (x1),...,hy (z,) is of the form ~;e*% for nonzero
constants v;, o, then the Hessian matriz H (f) of f is singular.

Proof. Let f = F (hy(x1) X -+ X hy, (z,,)) be a twice differentiable composite func-
tion such that at least two of hy (z1),..., hy (x,) is of the form ~;e®® for nonzero
constants v;, o;. Without lose of generality, we may assume that

Q2T2

hy = 7€ and hy = o€

Thus we get
AN hy\'
1 L) =0and (2] =0.
(5.1) (h) 0 an (h) 0
Substituting (5.1) into (3.1) gives the proof. O
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