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Abstract. A submanifold of a Euclidean space is said to be of constant-ratio if the
ratio of the length of the tangential and normal components of its position vector
function is constant. The notion of constant-ratio submanifolds was first introduced
and studied by the author in [5, 8] during the early 2000s. Such submanifolds relate
to a problem in physics concerning the motion in a central force field which obeys
the inverse-cube law of Newton (cf. [1, 15]). Recently, it was pointed out in [13] that
constant-ratio submanifolds also relate closely to D’Arcy Thomson’s basic principal
of natural growth in biology. In this paper, we provide a fundamental study of
totally real submanifolds of Cm in terms of the positive function x of the subman-
ifolds and the complex structure J of Cm. In particular, we classify constant-ratio
totally real submanifolds in Cm. Some related results are also obtained.

1. Introduction

Let x : M ! Eq be an isometric immersion of a Riemannian n-manifold M into a
Euclidean q-space Eq. We denote by x the immersion of M as well as the position
vector function of M in Eq. The position vector function is the simplest and the most
natural geometric object associated with submanifolds in Euclidean spaces.

There is a natural orthogonal decomposition of the position vector x at each point
on each submanifold M in Eq; namely,

x = x

T + x

N
,(1.1)

where x

T and x

N denote the tangential and normal components of x at the point,
respectively. Let |xT

| and |x

N
| denote the length of xT and x

N , respectively.
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Using the decomposition (1.1), the author introduced and studied the notion of
constant-ratio submanifolds in the early 2000s (see [5, 8]).

Definition 1.1. A submanifold M of a Euclidean space is said to be of constant-ratio
if the ratio |x

N
| : |xT

| is constant on M .

Clearly, a submanifold M in a Euclidean space is of constant-ratio if and only if
either xT = 0 or the ratio |x| : |xT

| is constant. Consequently, for each constant-ratio
submanifold with x

T
6= 0, there is a positive number � such that

|x|

2 = � |x

T
|

2
, |x|

2 = hx, xi ,

where h , i is the inner product on the Euclidean space. Moreover, a submanifold
M in a Euclidean space is of constant-ratio if and only if the angle between the
position vector field and tangent spaces of M is constant on M [8]. For this reason,
constant-ratio submanifolds are also known as equiangular submanifolds in [13].

The notion of constant-ratio submanifolds relates to the notion of convolution of
Riemannian manifolds in the sense of [6, 7]. Convolution manifolds are defined as fol-
lows: Let N1, N2 be Riemannian manifolds equipped with metrics g1, g2, respectively.
Consider a symmetric tensor hg1 ⇤f g2 of type (0,2) on N1 ⇥N2 defined by

hg1 ⇤f g2 = h

2
g1 + f

2
g2 + 2fhdf ⌦ dh

for some positive functions f and h on N1 and N2, respectively. The symmetric tensor

hg1 ⇤f g2 is called a convolution of g1 and g2. The product manifold N1⇥N2 endowed
with a convolution metric g = hg1 ⇤f g2 is called a convolution manifold [6, 7].

Submanifolds of constant-ratio also relate closely to a problem in physics concerning
the motion in a central force field which obeys the inverse-cube law. In fact, the
trajectory of a particle subject to a central force of attraction located at the origin
which obeys the inverse-cube law is a constant-ratio curve. The inverse-cube law
was originated from I. Newton in his letter sent to R. Hooke on December 13, 1679.
This letter is of great historical importance because it reveals the state of Newton’s
development of dynamics at that time (cf. [1, 14] and [15, §II, Proposition IX]).

Recently, it was pointed out by S. Haesen, A. I. Nistor and L. Verstraelen in [13] that
constant-ratio submanifolds also relate closely to D’Arcy Thomson’s basic principal
of natural growth in biology (see also [12, 16–18]).

An isometric immersion f : M ! M̃

m of a Riemannian n-manifoldM into a Kähler
m-manifold M̃

m is called totally real if the complex structure J of M̃ carries each
tangent vector of M into a normal vector (cf. [11]). Totally real submanifolds form
an important and natural class of submanifolds of Kähler manifolds, which includes
Lagrangian submanifolds (cf. [4, pages 322–335]).

In this paper, we provide a fundamental study of totally real submanifolds of the
complex Euclidean m-space Cm in terms of the positive function x of the totally real
submanifolds and the complex structure J of Cm. Consequently, we classify constant-
ratio totally real submanifolds in Cm. Some related results are also presented.
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2. Preliminaries

We follow the notations from [2, 3, 9].

2.1. Basic formulas and definitions. Let f : M ! Cm be an isometric immersion
of a Riemannian n-manifold M into the complex Euclidean m-space Cm. We denote
the Riemannian connections of M and Cm by r and r̃, respectively. Let D denote
the normal connection of the submanifold.

The formulas of Gauss and Weingarten are given respectively by

r̃XY = rXY + h(X, Y ),(2.1)

r̃X⇣ = �A⇣X +DX⇣,

for tangent vector fields X and Y and normal vector field ⇣. The second fundamental
form h is related to the shape operator A by

hh(X, Y ), ⇣i = hA⇣X, Y i .(2.2)

A submanifold M is called totally geodesic if its second fundamental form h vanishes
identically.

If we denote the Riemann curvature tensor of r by R, then the equations of Gauss
and Codazzi are given respectively by

hR(X, Y )Z,W i = hh(X,W ), h(Y, Z)i � hh(X,Z), h(Y,W )i ,

(rXh)(Y, Z) = (rY h)(X,Z),

where X, Y, Z,W are vector fields tangent to M and rh is defined by

(rXh)(Y, Z) = DXh(Y, Z)� h(rXY, Z)� h(Y,rXZ).

When M is a totally real submanifold, we also have (cf. [9, 11])

hh(X, Y ), JZi = hh(Y, Z), JXi = hh(Z,X), JY i .

2.2. Sasakian manifolds and anti-invariant submanifolds. An odd-dimensional
Riemannian manifold (M, g) is called an almost contact metric manifold if there exist
on M a (1, 1)-tensor field �, a vector field ⇠ and a 1-form ⌘ such that

�

2
X = �X + ⌘(X)⇠, ⌘(⇠) = 1,

g(�X,�Y ) = g(X, Y )� ⌘(X)⌘(Y ),

for vector fields X, Y on M . On an almost contact metric manifold, we also have

�⇠ = 0, ⌘ � � = 0.

The vector field ⇠ is called the structure vector field.
By a contact (2n+1)-manifold we mean a (2n+1)-dimensional manifoldM together

with a global 1-form ⌘ satisfying

⌘ ^ (d⌘)n 6= 0
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on M . If ⌘ of an almost contact metric manifold (M,�, ⇠, ⌘, g) is a contact form and
if ⌘ satisfies

d⌘(X, Y ) = g(X,�Y )

for all vectors X, Y tangent to M , then M is called a contact metric manifold. On a
contact metric (2n + 1)-manifold M , ⌘ = 0 defines a 2n-dimensional distribution in
TM , which is called the contact distribution.

An almost contact metric structure of M is called normal if the Nijenhuis torsion
[�,�] of � equals to �2d⌘⌦ ⇠. A normal contact metric manifold is called a Sasakian
manifold.

It can be proved that an almost contact metric manifold is Sasakian if and only if
the Riemann curvature tensor R satisfies

R(X, Y )⇠ = ⌘(Y )X � ⌘(X)Y

for any vector fields X, Y on M .
A plane section of a Sasakian manifold (M,�, ⇠, g) is called a �-section if it is

spanned by v,�(v) for some tangent vector v. The section curvature of a �-section is
called a �-sectional curvature.

Let S2m�1(1) denote the unit hypersphere of Cm centered at the origin, i.e.,

S

2m�1(1) = {z 2 Cm : hz, zi = 1}.

Let x denote the position function of S2m�1(1) in Cm.
If we put ⇠ = Jx and let �(X) denote the tangential component of JX for each

X 2 T (S2m�1(1)), then ⇠ is a unit tangent vector field of S2m�1(1). Let g on S

2m�1(1)
be the metric induced from the Euclidean metric of Cm and let ⌘ be the dual 1-form
of ⇠. Then (S2m�1(1),�, ⇠, ⌘, g) is a Sasakian manifold with constant �-sectional
curvature one.

Definition 2.1. A submanifold M of the Sasakian manifold is called anti-invariant
if �(TpM) ⇢ T

?
p M holds at each point p 2 M .

Definition 2.2. A submanifold M of the Sasakian manifold is called a C-totally real
submanifold if ⇠ is a normal vector field of M .

Remark 2.1. A direct consequence of Definitions 2.1 and 2.2 is that each C-totally
real submanifold of the Sasakian S

2m�1(1) is an anti-invariant submanifold.

Remark 2.2. Since � is necessarily of rank 2m� 2 on the Sasakian S

2m�1(1), we have
n  m for every n-dimensional anti-invariant submanifold of S2m�1(1).

Remark 2.3. On a Sasakian manifold of dimension 2n + 1, there exist C-totally real
submanifolds of the contact distribution of dimension less than or equal to n, but of
no higher dimension.
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3. A characterization of totally real cones

By a cone in a complex Euclidean m-space Cm, we mean a ruled submanifold
generated by a family of lines passing through a fixed point in Cm. A submanifold M

of Cm is called a totally real cone if M is a cone which is a totally real submanifold
(with respect to the complex structure J of Cm).

The following example shows that there exist ample examples of totally real cones
in complex Euclidean spaces.

Example 3.1. Let  : Nn�1
! S

2m�1(1) ⇢ Cm be a C-totally real submanifold of
S

2m�1(1) and let R = R⇤
� {0}. Then the map

x : R⇤
⇥N

n�1
! Cm

,

defined by x(t, p) 7! t (p), for every (t, p) 2 R⇤
⇥N

n�1, is a totally real cone in Cm.

Totally real cones can be characterized as follows.

Proposition 3.1. Let x : M ! Cm be a totally real immersion of a Riemannian
n-manifold M into Cm. Then the following three statements are equivalent:

(1) x 2 TM .
(2) Jx 2 J(TM)
(3) x : M ! Cm is an open portion of a totally real cone with vertex at the origin.

Proof. Under the hypothesis, the equivalence of (1) and (2) is trivial due to J

2 = �I.
(1) ) (3). If x 2 TM , then we have x = x

T . Hence, e1 = x/|x| is a unit tangent
vector field of M . Thus we have

r̃e1x = e1, r̃e1x = r̃e1(⇢e1) = (e1⇢)e1 + ⇢r̃e1e1,

which implies r̃e1e1 = 0. Therefore, the integral curves of e1 are open portions of
straight lines in Cm. Moreover, since the position vector is always tangent to M , the
generating lines, given by the integral curves of e1, always pass through the origin.
Consequently, M is an open portion of a totally real cone with vertex at the origin.

(3) ) (1). This is trivial. ⇤

We also need the following.

Lemma 3.1. Let � : M ! S

2m�1(1) be an n-dimensional anti-invariant submani-
fold of S2m�1(1) and let ◆ denote the inclusion map of S2m�1(1) in Cm. Then the
composition x = ◆ � � : M ! S

2m�1(1) ⇢ Cm is a totally real submanifold in Cm.

Proof. Assume that � : M ! S

2m�1(1) is an n-dimensional anti-invariant submani-
fold. Then we have �(TM) ⇢ T

?
M .

For each point p 2 M , let Cp be the contact subspace of TpM defined by

Cp = {X 2 TpM : hX, ⇠(p)i = 0}.
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Then we have dimCp � n� 1 and

�(Y ) = JY, for every Y 2 Cp.(3.1)

Case (i). ⇠(p) 2 TpM . In this case, we have TpM = Dp � Span{⇠}. Since
J⇠ = �x 2 T

?
p M , we obtain from (3.1) that J(TpM) ⇢ T

?
p M .

Case (ii). ⇠(p) 2 T

?
p M . In this case, we have TpM = Cp. Therefore, (3.1) implies

J(TpM) ⇢ T

?
p M .

Case (iii). ⇠(p) /2 TpM and ⇠(p) /2 T

?
p M . If we put

⇠(p) = ⇠

T (p) + ⇠

?(p)

with ⇠T (p) 2 TpM and ⇠?(p) 2 T

?
p M , then TpM is spanned by ⇠T (p) and Cp.

From (3.1) we get
⌦
J⇠

T (p), Y
↵
= �

⌦
⇠

T (p), JY
↵
= �

⌦
⇠

T (p),�(Y )
↵
= 0, for every Y 2 Cp.

Obviously, we also have
⌦
J⇠

T (p), ⇠T (p)
↵
= 0. Therefore, we have J(TpM) ⇢ T

?
p M .

Hence, in all of the three cases given above, J(TpM) ⇢ T

?
p M holds. Consequently,

x = ◆ � � : M ! S

2m�1(1) ⇢ Cm is a totally real submanifold in Cm. ⇤

4. Totally real submanifolds in Cm with Jx 2 TM

The following result characterizes and classifies totally real submanifolds of Cm

satisfying ⇠ = Jx 2 TM .

Theorem 4.1. Let x : M ! Cm be a totally real immersion of a Riemannian n-
manifold M into Cm. Then the following three statements are equivalent:

(1) Jx 2 TM .
(2) Up to a dilation of Cm, M is an anti-invariant submanifold of the Sasakian

S

2m�1(1) ⇢ Cm with ⇠ 2 TM .
(3) M is an open part of the Riemannian product of a circle S

1 and a Riemann-
ian (n � 1)-manifold N

n�1. Moreover, up to a suitable dilation of Cm, the
immersion is given by

x(t, u2, . . . , un) = e

it
�(u2, . . . , un),

where � is a C-totally real immersion of Nn�1 into the Sasakian S

2m�1(1).

Proof. Let x : M ! Cm be a Lagrangian immersion of M into Cm.

(1) ) (2). Suppose that ⇠ = Jx is a tangent vector field of M . If we put

D1 = Span{⇠}, D2 = (D1)
?
,

then we have TM = D1 �D2. Since Cm is Kählerian, we find

r̃Z⇠ = Jr̃Zx = JZ, for every Z 2 TM.(4.1)
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From (4.1) we find

rZ⇠ = 0,(4.2)

h(Z, ⇠) = JZ,(4.3)

h(⇠, ⇠) = J⇠ = �x,(4.4)

for any Z 2 TM . It follows from (4.2) that

Zhx, xi = Zh⇠, ⇠i = 2 hrZ⇠, ⇠i = 0, for every Z 2 TM.

Therefore, hx, xi is a constant. Hence, x(M) is contained in a hypersphere of Cm

centered at the origin. Consequently, after applying suitable dilation, x(M) lies in
the unit hypersphere S

2m�1(1).
Now, because x : M ! Cm is a totally real immersion, we have J(TM) ⇢ T

?
M ,

which implies �(TM) ⇢ T

?
M . Consequently, M is anti-invariant in S

2m�1(1) with
⇠ 2 TM . This gives statement (2).

(2) ) (3). It follows from (4.2) that D1 is a totally geodesic distribution, i.e., D1

is an integrable distribution whose leaves are totally geodesic in M . Moreover, it also
follows from (4.2) that each integral curve of ⇠ is an open portion of a great circle of
S

2m�1(1).
Since D1 and D2 are orthogonal complementary distributions, we obtain from (4.2)

that h[X, Y ], ⇠i = 0. Thus, D2 is an integral distribution.
Since ⇠ is orthogonal to D2 and M is totally real, we have

hr̃XY, ⇠ i = �hY, r̃X⇠ i = �hY, JX i = 0.(4.5)

On the other hand, it follows from formula (2.1) of Gauss that

hr̃XY, ⇠ i = hrXY, ⇠ i .(4.6)

Therefore, by combining (4.5) and (4.6), we conclude that D2 is also a totally geodesic
distribution. Consequently, M is locally the Riemannian product S1

⇥N

n�1 of a circle
S

1 and a Riemannian (n� 1)-manifold N

n�1, according to the well-known de Rham
decomposition theorem. Hence, there exists a local coordinate system {t, u2, . . . , un}

on M such that ⇠ = @
@t and

@
@u2

, . . . ,

@
@un

2 D2.
Now, it follows from (4.2), (4.3) and (4.4) that the immersion x : M ! Cm satisfies

the following system of partial di↵erential equations:

@

2
x

@t

2
= i

@x

@t

,(4.7)

@

2
x

@t@uj
= i

@x

@uj
,(4.8)

@

2
x

@ui@uj
=

nX

k=2

�k
ij

@x

@uk
+ h

✓
@

@uj
,

@

@uj

◆
�

⌧
@

@uj
,

@

@uj

�
x,

for i, j = 2, . . . , n, where �k
ij are the Christo↵el symbols.
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After solving (4.7) we get

x = A(u2, . . . , un) + e

it
�(u2, . . . , un)(4.9)

for some Cm-valued functions A and �.
By substituting (4.9) into (4.8) we find

@A

@uj
= 0, j = 2, . . . , n.

Thus, A is a constant vector, say c0. Consequently, (4.9) becomes

x = c0 + e

it
�(u2, . . . , un).(4.10)

From (4.10) we get

@x

@t

= ie it�,

which implies that h�,�i = 1, since ⇠ is a unit vector field. Therefore, it follows from
(4.9) and hL,Li = 1 that

0 = hc0, c0i+ 2
⌦
c0, e

it
�

↵
.(4.11)

Now, after taking the di↵erentiation of (4.11) twice with resect to t, we obtain⌦
c0, e

it
�

↵
= 0. By combining this with (4.11) gives c0 = 0. Consequently, (4.10)

reduces to

x = e

it
�(u2, . . . , un).(4.12)

From (4.12) we have

@x

@uj
= e

it @�

@uj
, j = 2, . . . , n,

which gives
⌧
@x

@ui
,

@x

@uj

�
=

⌧
@�

@ui
,

@�

@uj

�
, i, j = 2, . . . , n.

Therefore, � is an isometric immersion. From (4.12) we get

@x

@t

= Jx,

@x

@uj
= e

it @�

@uj
, k = 2, . . . , n.(4.13)

Since x : M ! Cm is a totally real immersion and the structure vector field ⇠ is
orthogonal to D2, we have

⌧
@x

@t

, i
@x

@uj

�
=

⌧
@x

@t

,

@x

@uj

�
= 0, j = 2, . . . , n.(4.14)

Now, we derive from (4.13) and (4.14) that
D
Jx, i @�@ui

E
= 0 holds for j = 2, . . . , n.

Consequently, � is a C-totally real immersion of Nn�1 into S

2m�1(1). Hence, we
obtain the statement (3).
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(3) ) (1). If x : M ! Cm is given by

x(t, u2, . . . , un) = e

it
�(u2, . . . , un),

such that � is a C-totally real immersion of Nn�1 into S

2m�1(1), then we obtain
Jx = @

@t 2 TM . This implies statement (1). ⇤

Remark 4.1. When M is a Lagrangian submanifold of Cn, Condition (1) of Theorem
4.1 holds automatically. In this case, Theorem 4.1 reduces to Theorem 1.1 of [10].

5. Totally real submanifolds in Cm with Jx 2 ⌫

Let x : M ! Cm be a totally real immersion. Then the normal bundle T?
M of M

admits a canonical decomposition:

T

?
M = J(TM)� ⌫,

where ⌫ is a subbundle of the normal bundle satisfying J⌫ = ⌫.
The following theorem provides a very simple characterization of C-totally real

submanifolds of S2m�1(1) in term of the position function x and the complex structure
J of Cm.

Theorem 5.1. Let x : M ! Cm be a totally real immersion of a Riemannian n-
manifold M into the complex Euclidean m-space Cm. Then the following two state-
ments are equivalent:

(1) Jx 2 ⌫.
(2) Up to a dilation of Cm, M is a C-totally real submanifold of the Sasakian

S

2m�1(1) ⇢ Cm.

Proof. Let x : M ! Cm be a Lagrangian isometric immersion of a Riemannian n-
manifold M into the complex Euclidean m-space Cm. Assume that ⇠ = Jx 2 ⌫.
Then we have

�A⇠Z +DZ⇠ = r̃Z⇠ = Jr̃Zx = JZ, for every Z 2 TM,

which yields

rZ⇠ = JZ, for every Z 2 TM.(5.1)

It follows from (5.1) that

Zhx, xi = Zh⇠, ⇠i = 2 hDZ⇠, ⇠i = 0

for any vector Z tangent to M . Thus hx, xi is a constant. Hence x(M) is contained in
a hypersphere of Cm centered at the origin. Consequently, after applying a suitable
dilation of Cm, x(M) lies in the unit hypersphere S

2m�1(1).
Since ⇠ lies in ⌫, ⇠ is a normal vector field of M . Therefore, by Definition 2.2, M

is a C-totally real submanifold of the Sasakian S

2m�1(1).
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Conversely, if M is a C-totally real submanifold of the Sasakian S

2m�1(1) ⇢ Cm,
then we have

h⇠, JZi = �hJ⇠, Zi = hx, Zi = 0, for all Z 2 TM.

Hence we obtain Jx = ⇠ 2 ⌫. ⇤

6. Classification of constant-ratio totally real submanifolds

In this section, we classify constant-ratio totally real submanifolds in the complex
Euclidean space Cm.

Theorem 6.1. Let x : M ! Cm be a totally real immersion of a Riemannian n-
manifold M into Cm. Then M is of constant ratio if and only if one of the following
four statements holds:

(1) M is an open portion of a totally real cone with vertex at the origin.
(2) Up to a suitable dilation, x : M ! Cm is given by

x(t, u2, . . . , un) = e

it
�(u2, . . . , un),

where � is an (n � 1)-dimensional C-totally real submanifold of the Sasakian
S

2m�1(1).
(3) Up a suitable dilation, M is an anti-invariant submanifold of the Sasakian

S

2m�1(1) with ⇠ /2 TM .
(4) Up to a suitable dilation, x : M ! Cm is given by

x(s, u2, . . . , un) = bs (s, u2, . . . , un), s 6= 0,

where b is a positive number < 1 and  : M ! S

2m�1(1) is an immersion
satisfying

(4.a) h s, si = (1� b

2)/(b2s2),
(4.b) h , i uii = �s h s, i uii, and
(4.c)

⌦
 ui , i uj

↵
=
⌦
 s, uj

↵
= 0,

for i, j = 2, . . . , n.

Proof. Suppose that x : M ! Cm is a constant-ratio totally real immersion from
a Riemannian n-manifold into Cm. Then exactly one of the following three cases
occurs:

(a) xN = 0;
(b) xT = 0;
(c) the ratio |x

N
|/|x

T
| is a positive number.

Case (a): xN = 0. In this case, Proposition 3.1 implies that M is an open part of
a totally real cone with vertex at the origin. This gives case (1) of the theorem.

Case (b): x

T = 0. In this case, the position vector field x is normal to M . Thus,
we have Zhx, xi = 2 hx, Zi = 0 for any Z 2 TM . Hence, hx, xi is a positive constant.
Therefore, x(M) lies in a hypersphere of Cm centered at the origin.

If ⇠ = Jx 2 TM , then Theorem 4.1 implies that case (2) of the theorem occurs.
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If ⇠ /2 TM , then, after applying a suitable dilation on Cm, M becomes an anti-
invariant submanifold of the Sasakian S

2m�1(1). Thus, we get case (3) of the theorem.

Case (c): |x

N
|/|x

T
| is a positive number. Let us put
⌦
x

N
, x

N
↵
= ↵

⌦
x

T
, x

T
↵
, x

T = �e1.(6.1)

then ↵ 2 R+ and � = hx, e1i = |x

T
|. We may extend e1 to a local orthonormal frame

e1, . . . , en on M .
From (6.1), we get

hx, xi = (1 + ↵)|xT
|

2
.(6.2)

Clearly, we must have ↵ 6= �1. By applying (6.2), we have

hx, e1i
2 = c hx, xi(6.3)

with c = (1 + ↵)�1. After taking the derivative of (6.3) with respect to an arbitrary
tangent vector X of M , we find

he1, xi
�
h r̃Xe1, xi+ he1, Xi

�
= c hx,Xi .(6.4)

In particular, for X = e1, (6.4) gives

hx, h(e1, e1)i = c� 1.(6.5)

If c = 1, (6.3) reduces to hx, e1i
2 = hx, xi, which implies x = x

T . Thus, we have
x

N = 0, which is a contradiction. Hence, we must have c 6= 1. Consequently, we may
put

x

N = µen+1, µ 6= 0(6.6)

for some unit normal vector field en+1 of M . If we put  =
⌦
Aen+1e1, e1

↵
, then by

applying (2.2), (6.5) and (6.6) we find

µ = c� 1.(6.7)

Since c 6= 1, we also have  6= 0. Since x = |x|e1, (6.4) gives

hx, r̃eje1 i = 0, j = 2, . . . , n.

From he1, r̃eje1 i = hx, r̃eje1 i = 0, we find

0 =
⌦
x

N
, h(e1, ej)

↵
= µ

⌦
Aen+1e1, ej

↵
.

Therefore, e1 is an eigenvector of Aen+1 with eigenvalue , i.e.,

Aen+1e1 = e1.(6.8)

On the other hand, by taking the derivative of hx, eji = 0 with respect to ek for
j, k = 2, . . . , n, we find

0 = �jk + � he1,rekeji+ µ hen+1, h(ek, ej)i .(6.9)
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Let us put

rekej =
nX

s=1

!

s
j (ek)es.

Then we find from (6.9) that

�!

1
j (ek) = ��jk � µ

⌦
Aen+1ej, ek

↵
.(6.10)

Since � 6= 0 and Aen+1 is self-adjoint, (6.10) yields

!

1
j (ek) = !

1
k(ej), j, k = 2, . . . , n.(6.11)

Let F denote the distribution spanned by e1 and F? denote the orthogonal com-
plementary distribution of F in TM . Then (6.11) implies that F? is a completely
integrable distribution. Moreover, since F is of rank one, the distribution F is also
completely integrable. Therefore, there exist local coordinate systems {s, u2, . . . , un}

on M such that e1 = @/@s and {@/@u2, . . . , @/@un} spans F?.
Because e1 is perpendicular to F?, we have

hxs, xu2i = · · · = hxs, xuni = 0, xs =
@x

@s

, xuj =
@x

@uj
.(6.12)

It follows from (6.6) and (6.7) that

hx, en+1i = c� 1.

Thus

(c� 1)ej

✓
1



◆
= �

⌦
x

T
, Aen+1ej

↵
+
⌦
x

N
, Dejen+1

↵
, j = 2, . . . , n.(6.13)

Since en+1 is a unit normal vector field and x

N = µen+1, we get
⌦
x

N
, Dejen+1

↵
= 0.

Consequently, by applying (6.8) and (6.13), we find e2 = · · · = en = 0. So, 
depends only on s, i.e.,  = (s). Therefore, after taking the derivative of (6.12)
with respect to s, we find

0 = 

0(s) hx, en+1i � 

2(s) hx, e1i ,(6.14)

in virtue of (6.8). By combining (6.7) and (6.14) we have

hx, e1i = (c� 1)


0



3
.(6.15)

Thus, after taking the derivative of (6.15) with respect to s, we get

1 + h x, r̃e1e1 i = (c� 1)

✓


0



3

◆0

.(6.16)

Combining (6.5) and (6.16) yields
✓


0



3

◆0

=
c

c� 1
.(6.17)



GEOMETRY OF POSITION FUNCTION OF TOTALLY REAL SUBMANIFOLDS 213

After solving (6.17) we obtain

1



2
=

✓
c

1� c

◆
s

2 + as+ b,

where a and b are integrating constants. Hence, after applying a suitable translation
on s, we have

1



2
=

✓
c

1� c

◆
s

2 + �(6.18)

for some suitable constant �.
Now, by applying (6.1), (6.15) and (6.18), we obtain

|x

T
| = � = (c� 1)



0



3
= cs.(6.19)

By combining (6.1) and (6.19), we find

hx, xi = cs

2
.(6.20)

For simplicity, let us put c = b

2 with b > 0, b 6= 1. Then we get from (6.19) and (6.20)
that

|x| = bs, |x

T
| = b

2
s.(6.21)

In view of (6.21), we may put

x(s, u2, . . . , un) = bs (s, u2, . . . , un),(6.22)

for some Cm-valued function  =  (s, u2, . . . , un) satisfying h , i = 1.
It follows from h , i = 1, (6.12) and (6.22) that

⌦
 s, uj

↵
= 0, j = 2, . . . , n.(6.23)

Moreover, since x : M ! Cm is a totally real immersion, we obtain conditions (4.b)
and (4.c) from (6.21). Finally, it is easy to obtain condition (4.a) from (6.21), (6.22),
(6.23) and hxs, xsi = 1.

The converse follows from Lemma 3.1 and straightforward computation. ⇤

Obviously, there exist many constant-ratio totally real submanifolds of types (1),
(2) and (3) given in Theorem 6.1. The next example shows that there also exist many
constant-ratio totally real submanifolds of type (4).

Example 6.1. Let b be a positive number < 1 and let ⌘ : Nn�1
! S

2m�3(1) ⇢ Cm�1

be a C-totally real submanifold of S2m�3(1).
Consider the map x : R⇥N

n�1
! Cm given by

x(s, u2, . . . , un) = bs

 
sin

✓p
1� b

2

b

ln s

◆
, cos

✓p
1� b

2

b

ln s

◆
⌘(u2, . . . , un)

!
.
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If we put

 (s, u2, . . . , un) =

 
sin

✓p
1� b

2

b

ln s

◆
, cos

✓p
1� b

2

b

ln s

◆
⌘(u2, . . . , un)

!
,

then it is straight-forward to verify that  satisfies conditions (4.a), (4.b) and (4.c);
and x : M ! Cm defines a constant-ratio totally real submanifold of type (4) with
ratio |x

N
| : |xT

| = 1 : b.
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[3] B.-Y. Chen, Geometry of Submanifolds, M. Dekker, New York, 1973.
[4] B.-Y. Chen, Riemannian submanifolds, in Handbook of Di↵erential Geometry,

(edited by F. Dillen and L. Verstraelen), volume 1, North Holland, Amsterdam,
2000, pp. 187–418.

[5] B.-Y. Chen, Constant-ratio hypersurfaces, Soochow J. Math. 27 (2001), 353–361.
[6] B.-Y. Chen, Convolution of Riemannian manifolds and its applications, Bull.

Austral. Math. Soc. 66 (2002), 177–191.
[7] B.-Y. Chen, More on convolution of Riemannian manifolds, Beiträge Algebra
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