KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 36 NUMBER 1 (2012), PAGES 83–91.

GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

SUZAN ZEREN 1 AND ÇIĞDEM A. BEKTAŞ 2

ABSTRACT. In this paper, we introduce and study the new sequence spaces $[V, \lambda, F, p, q, u]_0 (\Delta_v^m)$, $[V, \lambda, F, p, q, u]_1 (\Delta_v^m)$ and $[V, \lambda, F, p, q, u]_\infty (\Delta_v^m)$ which are generalized difference sequence spaces defined by a sequence of moduli in a locally convex Haussdorff topological linear space X whose topology is determined by a finite set Q of continuous seminorms q. We also study various algebraic and topological properties of these spaces, and some inclusion relations between these spaces. This study generalizes results of Atici and Bektaş [11].

1. INTRODUCTION

Let ω be the set of all sequences of real or complex numbers and ℓ_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$\|x\|_{\infty} = \sup_{k} |x_k|$$

where $k \in \mathbb{N} = \{1, 2, ...\}$, the set of positive integers.

The difference sequence spaces were first introduced by Kızmaz [12]. The notion was further generalized by Et and Çolak [18]. Later Et and Esi [17] defined the sequence spaces

$$X(\Delta_v^m) = \{x = (x_k) \in w : \Delta_v^m x \in X\}$$

where $m \in \mathbb{N}$, $\Delta_v^0 x = (v_k x_k)$, $\Delta_v x = (v_k x_k - v_{k+1} x_{k+1})$, $\Delta_v^m x = (\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1})$, and so that

$$\Delta_v^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} v_{k+i} x_{k+i}.$$

Key words and phrases. Difference sequence spaces, sequence of Moduli, seminorm 2010 Mathematics Subject Classification. Primary: 40C05, Secondary: 40H05. Received: April 19, 2011.

The notion of a modulus function was introduced by Nakano [13]. A modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) f(t) = 0 if and only if t = 0,
- (ii) $f(t+u) \le f(t) + f(u)$, for all $t, u \ge 0$,
- (iii) f is increasing,
- (iv) f is continuous from the right at 0.

It follows from (ii) and (iv) that f must be continuous on $[0, \infty)$. Also from condition (ii), we have $f(nx) \leq n \cdot f(x)$ for all $n \in \mathbb{N}$. A modulus function may be bounded or unbounded. Ruckle [22] used the idea of a modulus function to construct some spaces of complex sequences. Later on some sequence spaces, defined by a modulus function or sequence of moduli, were introduced and studied by Et [16], Bektaş and Çolak [9], Atıci and Bektaş [11], Bataineh [1], Khan and Ahmad [21] and many others.

Throughout this paper, let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$. The generalized de la Vallée-Pousin mean is defined by

$$t_n\left(x\right) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$ for n = 1, 2, ...

Let $X, Y \subset \omega$. Then we shall write

$$M(X,Y) = \bigcap_{x \in X} x^{-1} * Y = \{a \in \omega : ax \in Y \text{ for all } x \in X\} \quad ([14])$$

The set $X^{\alpha} = M(X, \ell_1)$ is called Köthe-Toeplitz dual or the α -dual of X. If $X \subset Y$, then $Y^{\alpha} \subset X^{\alpha}$. It is clear that $X \subset (X^{\alpha})^{\alpha} = X^{\alpha\alpha}$. If $X = X^{\alpha\alpha}$, then X is called an α -space. In particular, an α -space is called a Köthe space or a perfect sequence space.

Definition 1.1. Let X be a sequence space. Then X is called:

- (i) solid (or normal), if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$ for all sequences (α_k) of scalar with $|\alpha_k| \leq 1$;
- (ii) monotone provided X contains the canonical preimages of all its stepspaces;
- (iii) perfect $X = X^{\alpha\alpha}$;
- (iv) symmetric if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of \mathbb{N} ;
- (v) a sequence algebra if $(x_k), (y_k) \in X$ implies $(x_k y_k) \in X$.

It is well known that if X is perfect, then X is normal [20]. We use the following inequality throughout this paper

(1.1)
$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}$$

84

where a_k and b_k are complex numbers, $D = \max(1, 2^{G-1})$ and $G = \sup_k p_k < \infty$ ([14]).

Lemma 1.1. [7] Let q_1 and q_2 be seminorms on a linear space X. Then q_1 is stronger than q_2 if there exists a constant M such that $q_2(x) \leq M \cdot q_1(x)$ for all $x \in X$.

2. Main results

In this section we introduce some new sequence spaces defined by a sequence of modulus functions. And we study various algebraic and topological properties of these spaces. Certain inclusion relations between these spaces will be discussed in this section.

Definition 2.1. Let $F = (f_k)$ be a sequence of moduli, q is a seminorm, $p = (p_k)$ be a sequence of strictly positive real numbers, $v = (v_k)$ be any fixed sequence of nonzero complex numbers and $u = (u_k)$ be a sequence of positive real numbers. By $\omega(X)$ we shall denote the space of all sequences defined over X. Now we define the following sequence spaces. Let $m \in \mathbb{N}$ be fixed, then

$$[V,\lambda,F,p,q,u]_{1}(\Delta_{v}^{m}) = \{x \in \omega(X) : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k}\left(q\left(\Delta_{v}^{m}x_{k}-L\right)\right)\right]^{p_{k}} = 0, \exists L \in \mathbb{C}\},\$$
$$[V,\lambda,F,p,q,u]_{0}(\Delta_{v}^{m}) = \{x \in \omega(X) : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k}\left(q\left(\Delta_{v}^{m}x_{k}\right)\right)\right]^{p_{k}} = 0\},\$$
$$[V,\lambda,F,p,q,u]_{\infty}(\Delta_{v}^{m}) = \{x \in \omega(X) : \sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k}\left(q\left(\Delta_{v}^{m}x_{k}\right)\right)\right]^{p_{k}} < \infty\}.$$

Throughout the paper Z will denote any one of the notation 0, 1 or ∞ .

The above sequence spaces contain some unbounded sequences for $m \ge 1$. For example, let $X = \mathbb{C}$, $f_k(x) = x$ for all $k \in \mathbb{N}$, q(x) = |x|, $\lambda_n = n$ for all $n \in \mathbb{N}$, $v = (1, 1, \ldots)$, $u = (1, 1, \ldots)$ and $p_k = 1$ for all $k \in \mathbb{N}$, then $(k^m) \in [V, \lambda, F, p, q, u]_{\infty}(\Delta_v^m)$ but $(k^m) \notin \ell_{\infty}$.

In the case $p_k = 1$ for all $k \in \mathbb{N}$ we have $[V, \lambda, F, p, q, u]_Z (\Delta_v^m) = [V, \lambda, F, q, u]_Z (\Delta_v^m)$ and in the case $f_k(x) = x$ for every k we have $[V, \lambda, F, p, q, u]_Z (\Delta_v^m) = [V, \lambda, p, q, u]_Z (\Delta_v^m)$.

Theorem 2.1. Let the sequence (p_k) be bounded. Then $[V, \lambda, F, p, q, u]_Z(\Delta_v^m)$ are linear spaces over the complex field \mathbb{C} .

The proof is easy and thus omitted.

Theorem 2.2. $[V, \lambda, F, p, q, u]_0(\Delta_v^m)$ is a paranormed (need not to be totally paranormed) space with

$$G_{\Delta}(x) = \sup_{n} \left(\frac{1}{\lambda_n} \sum_{k \in I_n} u_k [f_k(q(\Delta_v^m x_k))]^{p_k} \right)^{\frac{1}{M}}$$

where $M = \max(1, \sup_{k} p_k)$.

Proof. From Theorem 2.1, for each $x \in [V, \lambda, F, p, q, u]_0(\Delta_v^m)$, $G_{\Delta}(x)$ exists. Clearly $G_{\Delta}(x) = G_{\Delta}(-x)$. It is trivial that $\Delta_v^m x_k = 0$ for $x = \theta$. Hence, we get $G_{\Delta}(\theta) = 0$. By Minkowski's inequality, we have $G_{\Delta}(x+y) \leq G_{\Delta}(x) + G_{\Delta}(y)$. Let η be any fixed complex numbers. By definition of f_k for all k, we have $x \to \theta$ implies $G_{\Delta}(\eta x) \to 0$. Similarly we have x fixed and $\eta \to 0$ implies $G_{\Delta}(\eta x) \to 0$. Finally $x \to \theta$ and $\eta \to 0$ implies $G_{\Delta}(\eta x) \to 0$. This implies that the scalar multiplication is continuous.

Theorem 2.3. Let $F = (f_k)$ and $G = (g_k)$ be two sequences of moduli. For any two sequences $p = (p_k)$ and $t = (t_k)$ of strictly positive real numbers and any two seminorms q_1 , q_2 we have

- (i) $[V, \lambda, F, p, q, u]_Z(\Delta_v^m) \cap [V, \lambda, G, p, q, u]_Z(\Delta_v^m) \subset [V, \lambda, F + G, p, q, u]_Z(\Delta_v^m),$
- (ii) $[V, \lambda, F, p, q_1, u]_Z(\Delta_v^m) \cap [V, \lambda, F, p, q_2, u]_Z(\Delta_v^m) \subset [V, \lambda, F, p, q_1 + q_2, u]_Z(\Delta_v^m),$
- (iii) if q_1 is stronger than q_2 , then $[V, \lambda, F, p, q_1, u]_Z(\Delta_v^m) \subset [V, \lambda, F, p, q_2, u]_Z(\Delta_v^m)$,
- (iv) if q_1 is equivalent to q_2 , then $[V, \lambda, F, p, q_1, u]_Z(\Delta_v^m) = [V, \lambda, F, p, q_2, u]_Z(\Delta_v^m)$,
- (v) $[V, \lambda, F, p, q_1, u]_Z(\Delta_v^m) \cap [V, \lambda, F, t, q_2, u]_Z(\Delta_v^m) \neq \emptyset$.

Proof. We give the proof for $Z = \infty$ only. The other cases can be proved in a similar way.

(i) Let
$$x \in [V, \lambda, F, p, q, u]_{\infty} (\Delta_v^m) \cap [V, \lambda, G, p, q, u]_{\infty} (\Delta_v^m)$$
. Then we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k [(f_k + g_k)(q(\Delta_v^m x_k))]^{p_k} \leq D \frac{1}{\lambda_n} \sum_{k \in I_n} u_k [f_k(q(\Delta_v^m x_k))]^{p_k} + D \frac{1}{\lambda_n} \sum_{k \in I_n} u_k [g_k(q(\Delta_v^m x_k))]^{p_k}.$$

Thus $[V, \lambda, F, p, q, u]_{\infty}(\Delta_v^m) \cap [V, \lambda, G, p, q, u]_{\infty}(\Delta_v^m) \subset [V, \lambda, F + G, p, q, u]_{\infty}(\Delta_v^m).$

(ii) It can be proved similar to (i).

(iii) Let $x \in [V, \lambda, F, p, q_1, u]_{\infty}(\Delta_v^m)$ and q_1 be stronger than q_2 . Therefore we have $q_2(\Delta_v^m x_k) \leq M q_1(\Delta_v^m x_k)$ for all $k \in I_n$ where M > 0. Since modulus function f_k for each k is non-decreasing, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k [f_k(q_2(\Delta_v^m x_k))]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} u_k [f_k(Mq_1(\Delta_v^m x_k))]^{p_k}$$
$$\leq \mu^G \frac{1}{\lambda_n} \sum_{k \in I_n} u_k [f_k(q_1(\Delta_v^m x_k))]^{p_k}$$
$$< \infty$$

where $|M| \leq \mu$ and $G = \sup_{k} p_k < \infty$. Thus $[V, \lambda, F, p, q_1, u]_{\infty} (\Delta_v^m) \subset [V, \lambda, F, p, q_2, u]_{\infty}$ (Δ_v^m) .

(iv) It can be proved using (iii).

(v) Since each the above classes of sequences is linear space, the zero element belongs to these spaces. Thus the intersection is non-empty. $\hfill \Box$

Theorem 2.4. Let X stand for $[V, \lambda, F, q, u]_Z$ and $m \ge 1$. Then $X(\Delta_v^{m-1}) \subset X(\Delta_v^m)$ and inclusions are strict. In general $X(\Delta_v^i) \subset X(\Delta_v^m)$ for all i = 1, 2, ..., m-1 and the inclusions are strict.

Proof. We give the proof for $[V, \lambda, F, q, u]_{\infty}(\Delta_v^m)$ only. In a similar way we proceed for $[V, \lambda, F, q, u]_1(\Delta_v^m)$ and $[V, \lambda, F, q, u]_0(\Delta_v^m)$. Let $x \in [V, \lambda, F, q, u]_{\infty}(\Delta_v^{m-1})$. Then we have

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k} \left(q \left(\Delta_{v}^{m-1} x_{k} \right) \right) \right] < \infty.$$

Since f_k is a modulus for each k and so non-decreasing, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k \right) \right) \right] = \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1} \right) \right) \right] \\
\leq \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^{m-1} x_k \right) \right) \right] \\
+ \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^{m-1} x_{k+1} \right) \right) \right].$$

Thus $[V, \lambda, F, q, u]_{\infty} (\Delta_v^{m-1}) \subset [V, \lambda, F, q, u]_{\infty} (\Delta_v^m)$. Proceeding in this way one will have $[V, \lambda, F, q, u]_{\infty} (\Delta_v^i) \subset [V, \lambda, F, q, u]_{\infty} (\Delta_v^m)$ for $i = 1, 2, \ldots, m-1$. The sequence $x = (k^m)$, for example, belongs to $[V, \lambda, F, q, u]_{\infty} (\Delta_v^m)$, but does not belong to $[V, \lambda, F, q, u]_{\infty} (\Delta_v^{m-1})$ for $f_k (u) = u, q(x) = |x|, u_k = 1, v_k = 1 \ (\forall k \in \mathbb{N})$. Therefore the inclusions are strict.

Theorem 2.5. Let $0 < p_k \leq t_k$ and (t_k/p_k) be bounded. Then $[V, \lambda, F, t, q, u]_Z(\Delta_v^m) \subset [V, \lambda, F, p, q, u]_Z(\Delta_v^m)$ where Z = 0, 1 or ∞ .

Proof. We shall prove only Z = 0. Let $x \in [V, \lambda, F, t, q, u]_0(\Delta_v^m)$. Write $w_k = [f_k(q(\Delta_v^m x_k))]^{t_k}$ and $\mu_k = p_k/t_k$, so that $0 < \mu \le \mu_k \le 1$ for each k.

We define the sequences (z_k) and (s_k) as follows:

Let $z_k = w_k$ and $s_k = 0$ if $w_k \ge 1$, and let $z_k = 0$ and $s_k = w_k$ if $w_k < 1$. Then it is clear that for all $k \in \mathbb{N}$, we have $w_k = z_k + s_k$, $w_k^{\mu_k} = z_k^{\mu_k} + s_k^{\mu_k}$. Now it follows that $z_k^{\mu_k} \le z_k \le w_k$ and $s_k^{\mu_k} \le s_k^{\mu}$. Therefore

$$\lambda_n^{-1} \sum_{k \in I_n} u_k w_k^{\mu_k} \le \lambda_n^{-1} \sum_{k \in I_n} u_k w_k + (\lambda_n^{-1} \sum_{k \in I_n} u_k s_k)^{\mu}.$$

Hence $x \in [V, \lambda, F, p, q, u]_0(\Delta_v^m)$.

Theorem 2.6. *If*

(2.1)
$$\sup_{k} u_{k} \left[f_{k} \left(t \right) \right]^{p_{k}} < \infty, \text{ for all } t > 0$$

we have

$$[V, \lambda, F, p, q, u]_1(\Delta_v^m) \subset [V, \lambda, F, p, q, u]_\infty(\Delta_v^m).$$

Proof. Let $x \in [V, \lambda, F, p, q, u]_1(\Delta_v^m)$. By using the definition of modulus function, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k \right) \right) \right]^{p_k} \\
\leq D \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k - L \right) \right) \right]^{p_k} + D \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(L \right) \right) \right]^{p_k} \\
\leq D \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k - L \right) \right) \right]^{p_k} + D \sup_k u_k \left[f_k \left(q \left(L \right) \right) \right]^{p_k}$$

where $D = \max(1, 2^{G-1})$. Thus we get the result by (2.1).

Theorem 2.7. Let $0 < \inf p_k \le \sup p_k < \infty$. Then the following statements are equivalent:

- $\begin{array}{ll} (\mathrm{i}) & [V,\lambda,p,q,u]_{\infty} \left(\Delta_{v}^{m}\right) \subseteq [V,\lambda,F,p,q,u]_{\infty} \left(\Delta_{v}^{m}\right), \\ (\mathrm{ii}) & [V,\lambda,p,q,u]_{0} \left(\Delta_{v}^{m}\right) \subseteq [V,\lambda,F,p,q,u]_{\infty} \left(\Delta_{v}^{m}\right), \\ (\mathrm{iii}) & \sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k}\left(t\right)\right]^{p_{k}} < \infty \text{ for all } t > 0. \end{array}$

Proof. It is trivial that (i) implies (ii). Let (ii) hold and suppose that (iii) does not hold. Then for some t > 0

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k} \left(t \right) \right]^{p_{k}} = \infty$$

and therefore there exists an increasing sequence (n_i) of positive integers such that

(2.2)
$$\frac{1}{\lambda_{n_i}} \sum_{k \in I_{n_i}} u_k \left[f_k \left(i^{-1} \right) \right]^{p_k} > i, \ i = 1, 2, \dots$$

Define $x = (x_k)$ such that

$$\Delta_v^m x_k = \begin{cases} i^{-1}, & k \in I_{n_i}, i = 1, 2, \dots \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \in [V, \lambda, p, q, u]_0(\Delta_v^m)$, but by (2.2), $x \notin [V, \lambda, F, p, q, u]_\infty(\Delta_v^m)$ which contradicts (ii). Hence (iii) must hold.

Let (iii) hold and $x \in [V, \lambda, p, q, u]_{\infty}(\Delta_v^m)$. Suppose that $x \notin [V, \lambda, F, p, q, u]_{\infty}(\Delta_v^m)$. Then we have

(2.3)
$$\sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k \right) \right) \right]^{p_k} = \infty.$$

Let $q(\Delta_v^m x_k) = t$ for each k. Then by (2.3)

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k} \left(t \right) \right]^{p_{k}} = \infty,$$

which contradicts (iii). Hence (i) must hold.

Theorem 2.8. Let $1 < p_k \leq \sup p_k < \infty$. Then if

(2.4)
$$\inf_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k} \left(t \right) \right]^{p_{k}} > 0 \text{ for all } t > 0,$$

we have

(2.5)
$$[V,\lambda,F,p,q,u]_0\left(\Delta_v^m\right) \subseteq [V,\lambda,p,q,u]_0\left(\Delta_v^m\right)$$

Proof. Let (2.4) hold and suppose that $x \in [V, \lambda, F, p, q, u]_0(\Delta_v^m)$, but $x \notin [V, \lambda, p, q, u]_0(\Delta_v^m)$. Then

(2.6)
$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k \right) \right) \right]^{p_k} \to 0, \text{ as } n \to \infty$$

For given $\epsilon > 0$ there exist n' such that $q(\Delta_v^m x_k) \ge \epsilon$ and $k \in I_{n'}$. Therefore $[f_k(\epsilon)]^{p_k} \le [f_k(q(\Delta_v^m x_k))]^{p_k}$

and by (2.6), we have

$$\lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k} \left(\epsilon \right) \right]^{p_{k}} = 0.$$

This contradicts (2.4). Hence (2.5) must hold.

Theorem 2.9. Let $1 \le p_k \le \sup p_k < \infty$. If

(2.7)
$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(t \right) \right]^{p_k} = \infty \text{ for all } t > 0$$

then we have $[V, \lambda, F, p, q, u]_{\infty} (\Delta_v^m) \subseteq [V, \lambda, p, q, u]_0 (\Delta_v^m)$.

Proof. Suppose that (2.7) holds and let $x \in [V, \lambda, F, p, q, u]_{\infty}(\Delta_v^m)$. Then for each n

(2.8)
$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k \right) \right) \right]^{p_k} \le K < \infty$$

for some K > 0. Suppose that $x \notin [V, \lambda, p, q, u]_0(\Delta_v^m)$. Then for given $\epsilon_0 > 0$ there exists an integer n' such that $q(\Delta_v^m x_k) \ge \epsilon_0$ for $k \in I_{n'}$. Therefore

$$\left[f_k\left(\epsilon_0\right)\right]^{p_k} \le \left[f_k\left(q\left(\Delta_v^m x_k\right)\right)\right]^{p_k}$$

and hence by (2.8) for each k we get

$$\frac{1}{\lambda_n}\sum_{k\in I_n}u_k\left[f_k\left(\epsilon_0\right)\right]^{p_k}\leq K<\infty$$

for some K > 0. This contradicts (2.7), i.e., $x \in [V, \lambda, p, q, u]_0(\Delta_v^m)$.

Theorem 2.10. Let $1 \le p_k \le \sup p_k < \infty$. If

(2.9)
$$\lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[f_{k} \left(t \right) \right]^{p_{k}} = 0 \text{ for all } t > 0$$

then $[V, \lambda, p, q, u]_{\infty} (\Delta_v^m) \subseteq [V, \lambda, F, p, q, u]_0 (\Delta_v^m).$

Proof. Suppose that (2.9) holds and $x \in [V, \lambda, p, q, u]_{\infty}(\Delta_v^m)$. Then

$$q\left(\Delta_v^m x_k\right) \le K < \infty$$

for every k and for some K > 0. Therefore

$$[f_k(q(\Delta_v^m x_k))]^{p_k} \le [f_k(K)]^{p_k}$$

and hence, by (2.9)

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(q \left(\Delta_v^m x_k \right) \right) \right]^{p_k} \le \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[f_k \left(K \right) \right]^{p_k} = 0$$

Thus $x \in [V, \lambda, F, p, q, u]_0 (\Delta_v^m)$.

Theorem 2.11. The sequence spaces $[V, \lambda, F, p, q, u]_Z(\Delta_v^m)$ are not solid for $m \ge 1$. *Proof.* If we take $u_k = 1$ for all $k \in \mathbb{N}$, the proof can be shown like in [11].

From the above theorem we may give the following corollary.

Corollary 2.1. The sequence spaces $[V, \lambda, F, p, q, u]_Z(\Delta_v^m)$ are not perfect for $m \ge 1$. **Theorem 2.12.** The sequence spaces $[V, \lambda, F, p, q, u]_1(\Delta_v^m)$ and $[V, \lambda, F, p, q, u]_\infty(\Delta_v^m)$ are not symmetric for $m \ge 1$.

Proof. Under the restrictions on X, p, f_k , q, u, v and λ as given in the proof of Theorem 2.11, consider the sequence $x = (k^m)$, then $x \in [V, \lambda, F, p, q, u]_{\infty} (\Delta_v^m)$. Let (y_k) be a rearrangement of (x_k) , which is defined as follows:

$$(y_k) = \{x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, \dots\}.$$

Then $(y_k) \notin [V, \lambda, F, p, q, u]_{\infty} (\Delta_v^m).$

Theorem 2.13. The space $[V, \lambda, F, p, q, u]_0(\Delta_v^m)$ is not symmetric for $m \ge 2$.

Theorem 2.14. The sequence spaces $[V, \lambda, F, p, q, u]_Z(\Delta_v^m)$ are not sequence algebras.

Proof. Under the restrictions on X, p, f_k , q, u, v and λ as given in the proof of Theorem 2.11, consider the sequence $x = (k^{m-2})$ and $y = (k^{m-2})$, then $x, y \in [V, \lambda, F, p, q, u]_Z(\Delta_v^m)$ but $x \cdot y \notin [V, \lambda, F, p, q, u]_Z(\Delta_v^m)$. The other cases can be proved on considering similar examples.

References

- A. H. A. Bataineh, On a generalized difference sequence spaces defined by a modulus function and statistical convergence, Commun. Korean Math. Soc. 21 (2) (2006), 261–272.
- [2] A. Esi, Some classes of generalized difference paranormed sequence spaces associated with multiplier sequences, J. Comp. Anal. Appl. 11 (3) (2007), 536–545.
- [3] A. Esi and B. C. Tripathy, On some generalized new type difference sequence spaces defined by a modulus function in a seminormed space, Fasciculi Math. 40 (2008), 15–24.
- [4] A. Esi, B. C. Tripathy and B. Sarma, On some new type generalized difference sequence spaces, Math. Slovaca 57 (5) (2007), 475–482.

- [5] A. Esi and M. Işık, Some generalized difference sequence spaces, Thai J. Math. 3 (2) (2005), 241–247.
- [6] A. Wilansky, Summability through Functional Analysis, Nort-Holland Mathematics studies, 85 (1984).
- [7] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York (1964).
- [8] Ç. A. Bektaş, On some difference sequence spaces defined by a sequence of Orlicz functions, J. Zhejiang Univ. Ser. A 7 (12) (2006), 2093–2096.
- [9] Ç. A. Bektaş and R. Çolak, Generalized strongly almost summable difference sequences of order m defined by a sequence of moduli, Demonstratio Math. 40 (3) (2007), 581–591.
- [10] E. Malkowsky and E. Savaş, Some λ -sequence spaces defined by a modulus, Arch. Math. (Brn.) **36** (2000), 219–228.
- [11] G. Atıci and Ç. A. Bektaş, On some new generalized difference sequence spaces defined by a sequence of moduli, Math. Slovaca, 61 (5) (2011), 789–798.
- [12] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169–176.
- [13] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953), 22–49.
- [14] I. J. Maddox, *Elements of Functional Analysis*, Camb. Univ. Press, (1970).
- [15] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166.
- [16] M. Et, Spaces of Cesáro difference sequences of order r defined by a modulus function in a locally convex space, Taiwanese J. Math. 10 (4) (2006), 865–879.
- [17] M. Et and A. Esi, On Köthe -Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc 23 (2000), 1–8.
- [18] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math. Bull. 21 (1995), 377–386.
- [19] M. Et, Y. Altın and H. Altınok, On some generalized difference sequence spaces defined by a modulus function, Filomat. 17 (2003), 23–33.
- [20] P. K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekker, New York (1981).
- [21] V. A. Khan and A. Ahmad, On some generalized difference sequence spaces defined by a sequence of moduli, IJRRAS. 7(2) (2011), 106–110.
- [22] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.

¹ DEPARTMENT OF MATHEMATICS FIRAT UNIVERSITY ELAZIG TURKEY *E-mail address*: szeren@hotmail.com

² DEPARTMENT OF MATHEMATICS FIRAT UNIVERSITY ELAZIG TURKEY *E-mail address*: cigdemas78@hotmail.com