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GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY
A SEQUENCE OF MODULI
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ABSTRACT. In this paper, we introduce and study the new sequence spaces
[V, A, F,p,q,ulo (AT, [V, \, Fyp,q,ul1 (A7) and [V, A, F,p, q, u]oo (AL") which are
generalized difference sequence spaces defined by a sequence of moduli in a locally
convex Haussdorff topological linear space X whose topology is determined by a
finite set Q of continuous seminorms q. We also study various algebraic and topo-
logical properties of these spaces, and some inclusion relations between these spaces.
This study generalizes results of Atici and Bektag [11].

1. INTRODUCTION

Let w be the set of all sequences of real or complex numbers and /.., ¢ and ¢y be
the linear spaces of bounded, convergent and null sequences = = (z) with complex
terms, respectively, normed by

. = supa

where k € N={1,2,...}, the set of positive integers.

The difference sequence spaces were first introduced by Kizmaz [12]. The notion
was further generalized by Et and Colak [18]. Later Et and Esi [17] defined the
sequence spaces

X(AY) ={x=(2)) ew: Az € X}

where m € N, Az = (vpap), Avr = (v, —vpp1Th11), ATz = (A" gy =A™ gy 1),
and so that

m A m
Angk = Z(—l)z< ; )Uk+ixk+i'

1=0
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The notion of a modulus function was introduced by Nakano [13]. A modulus f is

a function from [0, 00) to [0, 00) such that
(i) f(t) =0 if and only if ¢t = 0,

(i) f(t+u) < f(t)+ f(u), for all t,u >0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

It follows from (ii) and (iv) that f must be continuous on [0,00) . Also from
condition (ii), we have f(nz) < n- f(x) for all n € N. A modulus function may be
bounded or unbounded. Ruckle [22] used the idea of a modulus function to construct
some spaces of complex sequences. Later on some sequence spaces, defined by a
modulus function or sequence of moduli, were introduced and studied by Et [16],
Bektag and Colak [9], Atici and Bektag [11], Bataineh [1], Khan and Ahmad [21] and
many others.

Throughout this paper, let A = ()\,) be a non-decreasing sequence of positive
numbers tending to oo such that A\, ; < A, + 1, Ay = 1. The generalized de la
Vallée-Pousin mean is defined by

tn (x) = )\1 > ay,

n kel,

where I, = [n— A\, + 1,n] forn=1,2,....

Let X,Y C w. Then we shall write

M(X,Y)=(N2'*Y={ac€w:areY forall z € X} ([14]).
zeX

The set X* = M (X, /) is called Kéthe-Toeplitz dual or the a-dual of X. If
X C Y, then Y* C X It is clear that X C (X*)* = X If X = X then X
is called an a-space. In particular, an a-space is called a Kothe space or a perfect
sequence space.

Definition 1.1. Let X be a sequence space. Then X is called:
(i) solid (or normal), if (cyxy) € X whenever (zx) € X for all sequences (ay) of
scalar with |oy| < 1;
(ii) monotone provided X contains the canonical preimages of all its stepspaces;
(iii) perfect X = X*;
(iv) symmetric if (zx) € X implies (xﬂ(k)) € X, where 7 (k) is a permutation of N;
(v) a sequence algebra if (), (yx) € X implies (zxyx) € X.

It is well known that if X is perfect, then X is normal [20].
We use the following inequality throughout this paper

(1.1) |ar + 0™ < D {lap™ + [bx|™ }
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where a; and by, are complex numbers, D = max (1, 2G_1) and G = suppy, < oo ([14]).
k

Lemma 1.1. [7] Let ¢; and g5 be seminorms on a linear space X. Then q, is stronger
than qo if there exists a constant M such that qa(x) < M - q1(x) for all x € X.

2. MAIN RESULTS

In this section we introduce some new sequence spaces defined by a sequence of
modulus functions. And we study various algebraic and topological properties of
these spaces. Certain inclusion relations between these spaces will be discussed in
this section.

Definition 2.1. Let F' = (f;) be a sequence of moduli, ¢ is a seminorm, p = (px) be
a sequence of strictly positive real numbers, v = (vy) be any fixed sequence of nonzero
complex numbers and u = (uy) be a sequence of positive real numbers. By w (X)) we
shall denote the space of all sequences defined over X. Now we define the following
sequence spaces. Let m € N be fixed, then

VA Eopyg,uls (A7) = o € w(X) lima- 3 ue i (g (A — D)™ = 0,30 € T},

n kel,

VA g, (A7) = {r € w0 (X) - Time 3 we i (g (A7) = 0},

n kel,
1
moAn ker,

Throughout the paper Z will denote any one of the notation 0,1 or oc.

The above sequence spaces contain some unbounded sequences for m > 1. For
example, let X = C, fy(z) =z forall k € N, g(z) = |z|, \, = n foralln € N, v =
(1,1,...),u=(1,1,...) and pr = 1 for all k£ € N, then (k™) € [V, )\, F, p, q, u]s (AT)
but (k™) ¢ l.

In the case pr, = 1 for all k € N we have [V, \, F,p, q,u]z (A") = [V, A\, F, q, u]z (AT)
and in the case fi, () = x for every k we have [V, A\, F,p, q, ulz (A™) = [V, \, p, q, u]z (AT).

Theorem 2.1. Let the sequence (py) be bounded. Then [V, )\ F,p,q,ulz (AT) are
linear spaces over the complez field C.

The proof is easy and thus omitted.

Theorem 2.2. [V, A\, F,p,q,ulo (A") is a paranormed (need not to be totally para-
normed) space with

L

Ga (&) = sup (; )3 uk[fmm?xk))]m)

n n kel,

where M = max(1, suppy).
k
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Proof. From Theorem 2.1, for each = € [V, \, F,p, q,ulo (A"), Ga (x) exists. Clearly
Ga (z) = Ga (—z). Tt is trivial that Az, = 0 for = 0. Hence, we get Ga (6) = 0.
By Minkowski’s inequality, we have Ga (z + y) < Ga (z)+Ga (y). Let n be any fixed
complex numbers. By definition of f; for all k, we have z — 6 implies G (nz) — 0.
Similarly we have z fixed and n — 0 implies Ga (nz) — 0. Finally z — 6 and n — 0
implies Ga (nz) — 0. This implies that the scalar multiplication is continuous. [

Theorem 2.3. Let F' = (fx) and G = (gx) be two sequences of moduli. For any
two sequences p = (px) and t = (tx) of strictly positive real numbers and any two
seminorms qi, g we have

(i) [VoA, Ep,q,ulz (A™) N[V N G,p,q,ulz (A7) C VA F 4+ G,p,q,ulz (A7),
(il) [V;A Fop,quyulz (A7) N[V N Fop, g, ulz (A7) C VA Fop,qu + go, ul
(iil) if q1 is stronger than qa, then [V, A\, F,p,q1,ulz (A™) C [V, \, F, p, q2, u]
(iv) if q1 is equivalent to qa, then [V, X, F,p,q1,u]z (A7) = [V, A, F, p, go, u]
(V) VoA Eopoquulz (A7) N [VIA Fot, go,ulz (AT) # 2.

Z
Z
Z

Proof. We give the proof for Z = oo only. The other cases can be proved in a similar
way.
(i) Let = € [V, A, F\p, ¢, u]oo (A)) N[V, A, G, p, ¢, U)o (A7), Then we have

3wl ) @A) < DS wlhla(AT )
+ D S wlaa(AT )P
n kel,

Thus [V, A, £, . 4, ulac (A7) N[V, A, G, p, 4, ulao (A7) C [V A, F + G, p, q, oo (AT,
(i) It can be proved similar to (i).
(iii) Let z € [V, A, F, p, 1, u]oo (A") and ¢y be stronger than go. Therefore we have
@(AMz) < M ¢ (Al'xy) for all k € I, where M > 0. Since modulus function fj, for
each k is non-decreasing, we have

© X wlf@ AP < 5 S ulf(Ma (AT
n kel n kel
< WO 3wl (AT
n kel
< o0

where | M| < pand G = suppy, < co. Thus [V, A, F, p, q1, u|eo (AT) C [V, A, Fyp, g2, U] o
k
(A7).
(iv) It can be proved using (iii).
(v) Since each the above classes of sequences is linear space, the zero element
belongs to these spaces. Thus the intersection is non-empty. U
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Theorem 2.4. Let X stand for [V, \, F,q,u]z andm > 1. Then X (AT 1) C X (A™)
and inclusions are strict. In general X (A') C X (A™) for alli=1,2,...,m—1 and
the inclusions are strict.

Proof. We give the proof for [V, A, F,q, u|(A") only. In a similar way we proceed
for [V, \, F,q,u]i(A™) and [V, A\, F, q,u]o(A™). Let z € [V, \, F, q, u]oo (A" !). Then
we have
1
SUp-+— Z Uy, [fk (q (Avm_lxk))} < 0.
moAnker,

Since f; is a modulus for each k and so non-decreasing, we have

1 I -1 m—1
. k%:n ug [fr (g (AY'zr))] = I > uk S (q (AT xy — A} :ckﬂ)”
< 52 welfe(a (A0 )]

+ )\* Z Uk, fk (q (AT’lka))} .

Thus [V, \, F, q,ule (AT C [V, A, F, q,u]o (A™). Proceeding in this way one will
have [V, A\ F,q,ule (AY) C [V, F,q,ulo (A™) for ¢ = 1,2,....,m — 1. The se-
quence z = (k™), for example, belongs to [V, A, F, ¢, u]s (A"), but does not belong to
[V, F, q, ) (AT for fr, (u) = u, q(z) = |z|, up, = 1, v, = 1 (Vk € N). Therefore
the inclusions are strict. 0

Theorem 2.5. Let 0 < py, < ti and (tx/pr) be bounded. Then [V, \, Ft,q,u]z (A7) C
V. A, Fyp,q,ulz (A") where Z =0, 1 or oo.

Proof. We shall prove only Z = 0. Let = € [V, \ F,t,q,ulo (A”). Write wy =
[£x (q (A2 )™ and gy = pr/tr, so that 0 < p <y, < 1 for each k.

We define the sequences (z;) and (s;) as follows:

Let z, = wy and s, = 0 if wy, > 1, and let 2z, = 0 and s, = wy, if w,, < 1. Then it is
clear that for all k € N, we have wy, = 2z + sp, w,* = 2,* + s3,*. Now it follows that
2 < 2z < wy, and siF < sf. Therefore

NS wwlE <A T wpw + (AT ugsi)

kel keln ke,
Hence x € [V, \, F, p, q, ulo (A"). O
Theorem 2.6. If
(2.1) Sup 1 [fi (0)]"* < o0, forallt >0

we have
[Va )‘7 FaPaQau]l (A;n) C [V7)‘7F7p7Q7u]OO (Avm) .
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Proof. Let x € [V, A, F,p,q,ul; (A"). By using the definition of modulus function,
we have

2 vl @ara)”

gﬁ’zumm@@%wde+Dj§:mm@umw

n kel, n kel,

<D)\ Z Uk fk; A Ty — ))]pk + DSUIZUIC [fk (C] (L))]pk

" keln

where D = max (1, QG*I). Thus we get the result by (2.1). O

Theorem 2.7. Let 0 < infp, < suppr < oco. Then the following statements are
equivalent:
(i) [ViAp, ¢ ulee (AY) C [V, Fp, q,ul (AT,
(11) [V7 /\7p7 q, U]O (A;n) g [V7 /\7 F)p7 q, u]oo (AT)7
(iil) sup,, v Sper, u [fx ()] < 0o for allt > 0.
Proof. 1t is trivial that (i) implies (ii). Let (ii) hold and suppose that (iii) does not
hold. Then for some ¢t > 0

sup— 3 we [fi () = o

n An kel,
and therefore there exists an increasing sequence (n;) of positive integers such that
P _ ..
(2.2) —Zuk[fk< )} >i i=1,2,....
n’b keIn

Define x = (x}) such that

N il kel,, i=1,2,...
€T =
vk 0, otherwise.

Then = € [V, A\, p, q,ulo (A"), but by (2.2), ¢ [V, A\, F,p, q, u]s (A") which contra-
dicts (ii). Hence (iii) must hold.
Let (iii) hold and = € [V, A, p, q, u|s (Al"). Suppose that x & [V, A, F,p, q, u]o (AT).
Then we have
1
(2.3) sup— >y [fi (q (AT'ay))]* = oo.

n A kel
Let ¢ (A"zy,) =t for each k. Then by (2.3)

sup— 3wy [fi (O = oo,

n An kel,

which contradicts (iii). Hence (i) must hold. O
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Theorem 2.8. Let 1 < pp < suppg < oo. Then if

1
(2.4) inf — " wy [fi (8)]* > 0 for all t > 0,
" A el
we have
(25) [‘/7 /\7 Fapa q, U]O (Avm) g [V7 /\7pa q, U]O (Avm) :

Proof. Let (2.4) hold and suppose that = € [V, A, F, p, q, u]o (A"), but
Z ¢ [Vv )\7P7 q, u]O (Avm) Then

(2.6) )\1 > g [fi (g (AT'zy))P* — 0, as n — oo.
" kel

For given € > 0 there exist n’ such that ¢ (A”xy) > € and k € I,,,. Therefore
i ()" < [fu (q (Az)[™

and by (2.6), we have
11%11; S e [fe () = 0.

n kel
This contradicts (2.4). Hence (2.5) must hold. O
Theorem 2.9. Let 1 < pp < suppg < co. If
1
(2.7) li;LnA— > g [fi (0)]™F = o0 for all t >0
" kel

Proof. Suppose that (2.7) holds and let « € [V, A, F\ p, q, u]o (A"). Then for each n

(2.8) 53wl (g (AT ) < K < o0

n kel

for some K > 0. Suppose that = ¢ [V, A, p,q, ulo (A7). Then for given ¢y > 0 there
exists an integer n’ such that ¢ (Al'zy) > € for k € I /. Therefore

[fi (€0)]™ < [fr (q (A'zi))]™
and hence by (2.8) for each k we get

1
" Z ug [fr (€0)]F < K < o0
n kel,
for some K > 0. This contradicts (2.7), i.e., x € [V, A, p, q, ulo (AT). O
Theorem 2.10. Let 1 < pp < supp < oo. If
1
(2.9) lim— >y [fi (6)]"* =0 for allt >0
" An e,

then [V, A\, p, ¢, u)oe (AT) C [V, A, F,p, q, ulo (A™).
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Proof. Suppose that (2.9) holds and x € [V, A, p, q, u|s (A"). Then
q(AVx) < K < o0
for every k and for some K > 0. Therefore

[fi (g (Azi))]™ < [fi (KO
and hence, by (2.9)

1 - 1
hyrln)\— >k [fu (g (AT)™ < hglnf > uk [fi (K)]* =0,
n keln " kely
Thus z € [V7 )‘7 F7p> 4, u]O (Avm) O

Theorem 2.11. The sequence spaces [V, \, F,p,q,u]z (A") are not solid for m > 1.

Proof. If we take u, = 1 for all k& € N, the proof can be shown like in [11]. O
From the above theorem we may give the following corollary.

Corollary 2.1. The sequence spaces [V, \, F,p, q,u|z (A") are not perfect for m > 1.

Theorem 2.12. The sequence spaces [V, A, F, p, q,u]; (A™) and [V, \, F, p, q, u] s (A7)
are not symmetric for m > 1.

Proof. Under the restrictions on X, p, fi, ¢, u, v and A as given in the proof of
Theorem 2.11, consider the sequence x = (k™), then x € [V, A, F\p, q, u]o (A™). Let
(yx) be a rearrangement of (xy), which is defined as follows:

(?/k) = {ffl, X2,T4,T3,T9,T5,T16, L6, L25, L7, L36, L8, L49, T10; - - - } .

Then (yx) ¢ [V, A\ F.p, ¢, uloo (ATY). O
Theorem 2.13. The space [V, A, F, p, q,uo (A"") is not symmetric for m > 2.
Theorem 2.14. The sequence spaces [V, \, F, p, q,u]z (A") are not sequence algebras.

Proof. Under the restrictions on X, p, fx, ¢, u, v and A as given in the proof of
Theorem 2.11, consider the sequence z = (k™2) and y = (k™2), then z,y €
(V. X, Fyp,q,ulz (AM) but x-y & [V, A\, F, p, q,u]z (A"). The other cases can be proved
on considering similar examples. 0
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