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GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY
A SEQUENCE OF MODULI

SUZAN ZEREN 1 AND ÇIĞDEM A. BEKTAŞ 2

Abstract. In this paper, we introduce and study the new sequence spaces
[V, λ, F, p, q, u]0 (∆m

v ), [V, λ, F, p, q, u]1 (∆m
v ) and [V, λ, F, p, q, u]∞ (∆m

v ) which are
generalized difference sequence spaces defined by a sequence of moduli in a locally
convex Haussdorff topological linear space X whose topology is determined by a
finite set Q of continuous seminorms q. We also study various algebraic and topo-
logical properties of these spaces, and some inclusion relations between these spaces.
This study generalizes results of Atıci and Bektaş [11].

1. INTRODUCTION

Let ω be the set of all sequences of real or complex numbers and `∞, c and c0 be
the linear spaces of bounded, convergent and null sequences x = (xk) with complex
terms, respectively, normed by

‖x‖∞ = sup
k
|xk|

where k ∈ N = {1, 2, . . . }, the set of positive integers.
The difference sequence spaces were first introduced by Kızmaz [12]. The notion

was further generalized by Et and Çolak [18]. Later Et and Esi [17] defined the
sequence spaces

X(∆m
v ) = {x = (xk) ∈ w : ∆m

v x ∈ X}
where m ∈ N, ∆0

vx = (vkxk), ∆vx = (vkxk−vk+1xk+1), ∆m
v x = (∆m−1

v xk−∆m−1
v xk+1),

and so that

∆m
v xk =

m∑

i=0

(−1)i

(
m

i

)
vk+ixk+i.
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The notion of a modulus function was introduced by Nakano [13]. A modulus f is
a function from [0,∞) to [0,∞) such that

(i) f(t) = 0 if and only if t = 0,
(ii) f(t + u) ≤ f(t) + f(u), for all t, u ≥ 0,
(iii) f is increasing,
(iv) f is continuous from the right at 0.

It follows from (ii) and (iv) that f must be continuous on [0,∞) . Also from
condition (ii), we have f(nx) ≤ n · f(x) for all n ∈ N. A modulus function may be
bounded or unbounded. Ruckle [22] used the idea of a modulus function to construct
some spaces of complex sequences. Later on some sequence spaces, defined by a
modulus function or sequence of moduli, were introduced and studied by Et [16],
Bektaş and Çolak [9], Atıci and Bektaş [11], Bataineh [1], Khan and Ahmad [21] and
many others.

Throughout this paper, let λ = (λn) be a non-decreasing sequence of positive
numbers tending to ∞ such that λn+1 ≤ λn + 1, λ1 = 1. The generalized de la
Vallée-Pousin mean is defined by

tn (x) =
1

λn

∑

k∈In

xk,

where In = [n− λn + 1, n] for n = 1, 2, . . . .

Let X, Y ⊂ ω. Then we shall write

M (X, Y ) =
⋂

x∈X

x−1 ∗ Y = {a ∈ ω : ax ∈ Y for all x ∈ X} ([14]).

The set Xα = M (X, `1) is called Köthe-Toeplitz dual or the α-dual of X. If
X ⊂ Y , then Y α ⊂ Xα. It is clear that X ⊂ (Xα)α = Xαα. If X = Xαα, then X
is called an α-space. In particular, an α-space is called a Köthe space or a perfect
sequence space.

Definition 1.1. Let X be a sequence space. Then X is called:

(i) solid (or normal), if (αkxk) ∈ X whenever (xk) ∈ X for all sequences (αk) of
scalar with |αk| ≤ 1;

(ii) monotone provided X contains the canonical preimages of all its stepspaces;
(iii) perfect X = Xαα;

(iv) symmetric if (xk) ∈ X implies
(
xπ(k)

)
∈ X, where π (k) is a permutation of N;

(v) a sequence algebra if (xk) , (yk) ∈ X implies (xkyk) ∈ X.

It is well known that if X is perfect, then X is normal [20].
We use the following inequality throughout this paper

(1.1) |ak + bk|pk ≤ D {|ak|pk + |bk|pk}
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where ak and bk are complex numbers, D = max
(
1, 2G−1

)
and G = sup

k
pk < ∞ ([14]).

Lemma 1.1. [7] Let q1 and q2 be seminorms on a linear space X. Then q1 is stronger
than q2 if there exists a constant M such that q2(x) ≤ M · q1(x) for all x ∈ X.

2. Main results

In this section we introduce some new sequence spaces defined by a sequence of
modulus functions. And we study various algebraic and topological properties of
these spaces. Certain inclusion relations between these spaces will be discussed in
this section.

Definition 2.1. Let F = (fk) be a sequence of moduli, q is a seminorm, p = (pk) be
a sequence of strictly positive real numbers, v = (vk) be any fixed sequence of nonzero
complex numbers and u = (uk) be a sequence of positive real numbers. By ω (X) we
shall denote the space of all sequences defined over X. Now we define the following
sequence spaces. Let m ∈ N be fixed, then

[V, λ, F, p, q, u]1 (∆m
v ) = {x ∈ ω (X) : lim

n

1

λn

∑

k∈In

uk [fk (q (∆m
v xk − L))]pk = 0,∃L ∈ C},

[V, λ, F, p, q, u]0 (∆m
v ) = {x ∈ ω (X) : lim

n

1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk = 0},

[V, λ, F, p, q, u]∞ (∆m
v ) = {x ∈ ω (X) : sup

n

1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk < ∞}.

Throughout the paper Z will denote any one of the notation 0, 1 or ∞.
The above sequence spaces contain some unbounded sequences for m ≥ 1. For

example, let X = C, fk (x) = x for all k ∈ N, q (x) = |x|, λn = n for all n ∈ N, v =
(1, 1, . . . ), u = (1, 1, . . . ) and pk = 1 for all k ∈ N, then (km) ∈ [V, λ, F, p, q, u]∞ (∆m

v )
but (km) /∈ `∞.

In the case pk = 1 for all k ∈ N we have [V, λ, F, p, q, u]Z (∆m
v ) = [V, λ, F, q, u]Z (∆m

v )
and in the case fk (x) = x for every k we have [V, λ, F, p, q, u]Z (∆m

v ) = [V, λ, p, q, u]Z (∆m
v ).

Theorem 2.1. Let the sequence (pk) be bounded. Then [V, λ, F, p, q, u]Z (∆m
v ) are

linear spaces over the complex field C.

The proof is easy and thus omitted.

Theorem 2.2. [V, λ, F, p, q, u]0 (∆m
v ) is a paranormed (need not to be totally para-

normed) space with

G∆ (x) = sup
n


 1

λn

∑

k∈In

uk[fk(q(∆
m
v xk))]

pk




1
M

where M = max(1, sup
k

pk).
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Proof. From Theorem 2.1, for each x ∈ [V, λ, F, p, q, u]0 (∆m
v ), G∆ (x) exists. Clearly

G∆ (x) = G∆ (−x). It is trivial that ∆m
v xk = 0 for x = θ. Hence, we get G∆ (θ) = 0.

By Minkowski’s inequality, we have G∆ (x + y) ≤ G∆ (x)+G∆ (y). Let η be any fixed
complex numbers. By definition of fk for all k, we have x → θ implies G∆ (ηx) → 0.
Similarly we have x fixed and η → 0 implies G∆ (ηx) → 0. Finally x → θ and η → 0
implies G∆ (ηx) → 0. This implies that the scalar multiplication is continuous. ¤

Theorem 2.3. Let F = (fk) and G = (gk) be two sequences of moduli. For any
two sequences p = (pk) and t = (tk) of strictly positive real numbers and any two
seminorms q1, q2 we have

(i) [V, λ, F, p, q, u]Z (∆m
v ) ∩ [V, λ, G, p, q, u]Z (∆m

v ) ⊂ [V, λ, F + G, p, q, u]Z (∆m
v ),

(ii) [V, λ, F, p, q1, u]Z (∆m
v ) ∩ [V, λ, F, p, q2, u]Z (∆m

v ) ⊂ [V, λ, F, p, q1 + q2, u]Z (∆m
v ),

(iii) if q1 is stronger than q2, then [V, λ, F, p, q1, u]Z (∆m
v ) ⊂ [V, λ, F, p, q2, u]Z (∆m

v ),
(iv) if q1 is equivalent to q2, then [V, λ, F, p, q1, u]Z (∆m

v ) = [V, λ, F, p, q2, u]Z (∆m
v ),

(v) [V, λ, F, p, q1, u]Z (∆m
v ) ∩ [V, λ, F, t, q2, u]Z (∆m

v ) 6= ∅.

Proof. We give the proof for Z = ∞ only. The other cases can be proved in a similar
way.

(i) Let x ∈ [V, λ, F, p, q, u]∞ (∆m
v ) ∩ [V, λ, G, p, q, u]∞ (∆m

v ). Then we have

1

λn

∑

k∈In

uk[(fk + gk)(q(∆
m
v xk))]

pk ≤ D
1

λn

∑

k∈In

uk[fk(q(∆
m
v xk))]

pk

+ D
1

λn

∑

k∈In

uk[gk(q(∆
m
v xk))]

pk .

Thus [V, λ, F, p, q, u]∞ (∆m
v ) ∩ [V, λ, G, p, q, u]∞ (∆m

v ) ⊂ [V, λ, F + G, p, q, u]∞ (∆m
v ).

(ii) It can be proved similar to (i).
(iii) Let x ∈ [V, λ, F, p, q1, u]∞ (∆m

v ) and q1 be stronger than q2. Therefore we have
q2(∆

m
v xk) ≤ M q1(∆

m
v xk) for all k ∈ In where M > 0. Since modulus function fk for

each k is non-decreasing, we have

1

λn

∑

k∈In

uk[fk(q2(∆
m
v xk))]

pk ≤ 1

λn

∑

k∈In

uk[fk(Mq1(∆
m
v xk))]

pk

≤ µG 1

λn

∑

k∈In

uk[fk(q1(∆
m
v xk))]

pk

< ∞
where |M | ≤ µ and G = sup

k
pk < ∞. Thus [V, λ, F, p, q1, u]∞ (∆m

v ) ⊂ [V, λ, F, p, q2, u]∞

(∆m
v ).
(iv) It can be proved using (iii).
(v) Since each the above classes of sequences is linear space, the zero element

belongs to these spaces. Thus the intersection is non-empty. ¤
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Theorem 2.4. Let X stand for [V, λ, F, q, u]Z and m ≥ 1. Then X (∆m−1
v ) ⊂ X (∆m

v )
and inclusions are strict. In general X (∆i

v) ⊂ X (∆m
v ) for all i = 1, 2, . . . , m− 1 and

the inclusions are strict.

Proof. We give the proof for [V, λ, F, q, u]∞(∆m
v ) only. In a similar way we proceed

for [V, λ, F, q, u]1(∆
m
v ) and [V, λ, F, q, u]0(∆

m
v ). Let x ∈ [V, λ, F, q, u]∞ (∆m−1

v ). Then
we have

sup
n

1

λn

∑

k∈In

uk

[
fk

(
q

(
∆m−1

v xk

))]
< ∞.

Since fk is a modulus for each k and so non-decreasing, we have

1

λn

∑

k∈In

uk [fk (q (∆m
v xk))] =

1

λn

∑

k∈In

uk

[
fk

(
q

(
∆m−1

v xk −∆m−1
v xk+1

))]

≤ 1

λn

∑

k∈In

uk

[
fk

(
q

(
∆m−1

v xk

))]

+
1

λn

∑

k∈In

uk

[
fk

(
q

(
∆m−1

v xk+1

))]
.

Thus [V, λ, F, q, u]∞ (∆m−1
v ) ⊂ [V, λ, F, q, u]∞ (∆m

v ). Proceeding in this way one will
have [V, λ, F, q, u]∞ (∆i

v) ⊂ [V, λ, F, q, u]∞ (∆m
v ) for i = 1, 2, . . . , m − 1. The se-

quence x = (km), for example, belongs to [V, λ, F, q, u]∞ (∆m
v ), but does not belong to

[V, λ, F, q, u]∞ (∆m−1
v ) for fk (u) = u, q(x) = |x|, uk = 1, vk = 1 (∀k ∈ N). Therefore

the inclusions are strict. ¤

Theorem 2.5. Let 0 < pk ≤ tk and (tk/pk) be bounded. Then [V, λ, F, t, q, u]Z (∆m
v ) ⊂

[V, λ, F, p, q, u]Z (∆m
v ) where Z = 0, 1 or ∞.

Proof. We shall prove only Z = 0. Let x ∈ [V, λ, F, t, q, u]0 (∆m
v ). Write wk =

[fk (q (∆m
v xk))]

tk and µk = pk/tk, so that 0 < µ ≤ µk ≤ 1 for each k.
We define the sequences (zk) and (sk) as follows:
Let zk = wk and sk = 0 if wk ≥ 1, and let zk = 0 and sk = wk if wk < 1. Then it is

clear that for all k ∈ N, we have wk = zk + sk, wµk
k = zµk

k + sµk
k . Now it follows that

zµk
k ≤ zk ≤ wk and sµk

k ≤ sµ
k . Therefore

λ−1
n

∑

k∈In

ukw
µk
k ≤ λ−1

n

∑

k∈In

ukwk + (λ−1
n

∑

k∈In

uksk)
µ.

Hence x ∈ [V, λ, F, p, q, u]0 (∆m
v ). ¤

Theorem 2.6. If

(2.1) sup uk
k

[fk (t)]pk < ∞, for all t > 0

we have

[V, λ, F, p, q, u]1 (∆m
v ) ⊂ [V, λ, F, p, q, u]∞ (∆m

v ) .



88 SUZAN ZEREN AND ÇIĞDEM A. BEKTAŞ

Proof. Let x ∈ [V, λ, F, p, q, u]1 (∆m
v ). By using the definition of modulus function,

we have

1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk

≤D
1

λn

∑

k∈In

uk [fk (q (∆m
v xk − L))]pk + D

1

λn

∑

k∈In

uk [fk (q (L))]pk

≤D
1

λn

∑

k∈In

uk [fk (q (∆m
v xk − L))]pk + Dsup uk

k
[fk (q (L))]pk

where D = max
(
1, 2G−1

)
. Thus we get the result by (2.1). ¤

Theorem 2.7. Let 0 < inf pk ≤ sup pk < ∞. Then the following statements are
equivalent:

(i) [V, λ, p, q, u]∞ (∆m
v ) ⊆ [V, λ, F, p, q, u]∞ (∆m

v ),
(ii) [V, λ, p, q, u]0 (∆m

v ) ⊆ [V, λ, F, p, q, u]∞ (∆m
v ),

(iii) supn
1

λn

∑
k∈In

uk [fk (t)]pk < ∞ for all t > 0.

Proof. It is trivial that (i) implies (ii). Let (ii) hold and suppose that (iii) does not
hold. Then for some t > 0

sup
n

1

λn

∑

k∈In

uk [fk (t)]pk = ∞

and therefore there exists an increasing sequence (ni) of positive integers such that

(2.2)
1

λni

∑

k∈Ini

uk

[
fk

(
i−1

)]pk
> i, i = 1, 2, . . . .

Define x = (xk) such that

∆m
v xk =





i−1, k ∈ Ini
, i = 1, 2, . . .

0, otherwise.

Then x ∈ [V, λ, p, q, u]0 (∆m
v ), but by (2.2), x /∈ [V, λ, F, p, q, u]∞ (∆m

v ) which contra-
dicts (ii). Hence (iii) must hold.

Let (iii) hold and x ∈ [V, λ, p, q, u]∞ (∆m
v ). Suppose that x /∈ [V, λ, F, p, q, u]∞ (∆m

v ).
Then we have

(2.3) sup
n

1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk = ∞.

Let q (∆m
v xk) = t for each k. Then by (2.3)

sup
n

1

λn

∑

k∈In

uk [fk (t)]pk = ∞,

which contradicts (iii). Hence (i) must hold. ¤
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Theorem 2.8. Let 1 < pk ≤ sup pk < ∞. Then if

(2.4) inf
n

1

λn

∑

k∈In

uk [fk (t)]pk > 0 for all t > 0,

we have

(2.5) [V, λ, F, p, q, u]0 (∆m
v ) ⊆ [V, λ, p, q, u]0 (∆m

v ) .

Proof. Let (2.4) hold and suppose that x ∈ [V, λ, F, p, q, u]0 (∆m
v ), but

x /∈ [V, λ, p, q, u]0 (∆m
v ). Then

(2.6)
1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk → 0, as n →∞.

For given ε > 0 there exist n′ such that q (∆m
v xk) ≥ ε and k ∈ In′ . Therefore

[fk (ε)]pk ≤ [fk (q (∆m
v xk))]

pk

and by (2.6), we have

lim
n

1

λn

∑

k∈In

uk [fk (ε)]pk = 0.

This contradicts (2.4). Hence (2.5) must hold. ¤

Theorem 2.9. Let 1 ≤ pk ≤ sup pk < ∞. If

(2.7) lim
n

1

λn

∑

k∈In

uk [fk (t)]pk = ∞ for all t > 0

then we have [V, λ, F, p, q, u]∞ (∆m
v ) ⊆ [V, λ, p, q, u]0 (∆m

v ).

Proof. Suppose that (2.7) holds and let x ∈ [V, λ, F, p, q, u]∞ (∆m
v ). Then for each n

(2.8)
1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk ≤ K < ∞

for some K > 0. Suppose that x /∈ [V, λ, p, q, u]0 (∆m
v ). Then for given ε0 > 0 there

exists an integer n′ such that q (∆m
v xk) ≥ ε0 for k ∈ In′ . Therefore

[fk (ε0)]
pk ≤ [fk (q (∆m

v xk))]
pk

and hence by (2.8) for each k we get

1

λn

∑

k∈In

uk [fk (ε0)]
pk ≤ K < ∞

for some K > 0. This contradicts (2.7), i.e., x ∈ [V, λ, p, q, u]0 (∆m
v ). ¤

Theorem 2.10. Let 1 ≤ pk ≤ sup pk < ∞. If

(2.9) lim
n

1

λn

∑

k∈In

uk [fk (t)]pk = 0 for all t > 0

then [V, λ, p, q, u]∞ (∆m
v ) ⊆ [V, λ, F, p, q, u]0 (∆m

v ).
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Proof. Suppose that (2.9) holds and x ∈ [V, λ, p, q, u]∞ (∆m
v ). Then

q (∆m
v xk) ≤ K < ∞

for every k and for some K > 0. Therefore

[fk (q (∆m
v xk))]

pk ≤ [fk (K)]pk

and hence, by (2.9)

lim
n

1

λn

∑

k∈In

uk [fk (q (∆m
v xk))]

pk ≤ lim
n

1

λn

∑

k∈In

uk [fk (K)]pk = 0.

Thus x ∈ [V, λ, F, p, q, u]0 (∆m
v ). ¤

Theorem 2.11. The sequence spaces [V, λ, F, p, q, u]Z (∆m
v ) are not solid for m ≥ 1.

Proof. If we take uk = 1 for all k ∈ N, the proof can be shown like in [11]. ¤
From the above theorem we may give the following corollary.

Corollary 2.1. The sequence spaces [V, λ, F, p, q, u]Z (∆m
v ) are not perfect for m ≥ 1.

Theorem 2.12. The sequence spaces [V, λ, F, p, q, u]1 (∆m
v ) and [V, λ, F, p, q, u]∞ (∆m

v )
are not symmetric for m ≥ 1.

Proof. Under the restrictions on X, p, fk, q, u, v and λ as given in the proof of
Theorem 2.11, consider the sequence x = (km), then x ∈ [V, λ, F, p, q, u]∞ (∆m

v ). Let
(yk) be a rearrangement of (xk), which is defined as follows:

(yk) = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, . . . } .

Then (yk) /∈ [V, λ, F, p, q, u]∞ (∆m
v ). ¤

Theorem 2.13. The space [V, λ, F, p, q, u]0 (∆m
v ) is not symmetric for m ≥ 2.

Theorem 2.14. The sequence spaces [V, λ, F, p, q, u]Z (∆m
v ) are not sequence algebras.

Proof. Under the restrictions on X, p, fk, q, u, v and λ as given in the proof of
Theorem 2.11, consider the sequence x = (km−2) and y = (km−2), then x, y ∈
[V, λ, F, p, q, u]Z (∆m

v ) but x·y /∈ [V, λ, F, p, q, u]Z (∆m
v ). The other cases can be proved

on considering similar examples. ¤
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[8] Ç. A. Bektaş, On some difference sequence spaces defined by a sequence of Orlicz functions, J.

Zhejiang Univ. Ser. A - 7 (12) (2006), 2093–2096.
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