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FOUR SERIES OF HYPERBOLIC SPACE GROUPS WITH

SIMPLICIAL DOMAINS, AND THEIR SUPERGROUPS

MILICA STOJANOVIĆ

Abstract. Hyperbolic space groups are isometry groups, acting discontinuously
on the hyperbolic 3-space with compact fundamental domain. One possibility to
classify them is to look for fundamental domains of these groups.

Here are considered supergroups for four series of groups with simplicial funda-
mental domains. Considered simplices, denoted in [9] by T19, T46, T59, belong to
family F12, while T31 belongs to F27.

1. Introduction

Hyperbolic space groups are isometry groups, acting discontinuously on the hyper-

bolic 3-space with compact fundamental domain. One possibility to classify them

is to look for fundamental domains of these groups. Face pairing identifications of

a given polyhedron give us generators and relations for a space group by Poincaré

Theorem [1], [3], [7].

The simplest fundamental domains are simplices and truncated simplices by polar

planes of vertices when they lie out of the absolute. There are 64 combinatorially dif-

ferent face pairings of fundamental simplices [16], [6], furthermore 35 solid transitive

non-fundamental simplex identifications [6]. I. K. Zhuk [16] has classified Euclidean

and hyperbolic fundamental simplices of finite volume up to congruence. Some com-

pleting cases are discussed in [2], [5], [10], [11], [12], [13], [14], [15]. Algorithmic
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procedure is given by E. Molnár and I. Prok [5]. In [6], [8] and [9] the authors sum-

marize all these results, arranging identified simplices into 32 families. Each of them

is characterized by the so-called maximal series of simplex tilings. Besides spher-

ical, Euclidean, hyperbolic realizations there exist also other metric realizations in

3-dimensional simply connected homogeneous Riemannian spaces, moreover, metri-

cally non-realizable topological simplex tilings occur as well [4].

When vertices are out of the absolute, the simplex is not compact and then we

truncate it with polar planes of the vertices. The new compact polyhedron obtained

in that way, let us call it trunc-simplex, is fundamental domain of some larger group.

It has new triangular faces whose pairing gives new generators. For simplicity, here

we require that the new pairing generators keep the original simplicial face structure.

Other possibilities will be discussed elsewhere. Dihedral angles around new edges are

π/2. That means that there will be four congruent polyhedra around them in a new

fundamental space filing. These investigations have been initiated by the author (see

e.g. [14]).

Each identified simplex, considered in this paper, has two equivalence classes for

edges with three edges in each. Edges in the same class haven’t common vertex.

There are 4 different face pairings: T19, T46, T59 in family F12 and T31 in family F27

to investigate in this paper to extend the series tabled in [9].

In Section 2 we recall Poincaré Theorem which provides a method to construct

discontinuously acting ismometry groups. In Section 3 we discuss the supergroups

with trunc-simplices as fundamental domains, for each simplex series separately (see

Figures 1, 6, 8, 10). Since all considered simplices have the same inner symmetry,

namely a half-turn about axis line h in Figure 5, this also gives a possibility to consider

supergroups by this property. This interesting phenomenon occurs at the first three

series, but not at T31.

2. Construction of discontinuously acting isometry groups

Generators and relations for a space group G with a given polyhedron P (a simplex

or a trunc-simplex in the considered cases) as a fundamental domain can be obtained

by the Poincarè theorem. It is necessary to consider all face pairing identifications

of such domains. Those will be isometries, which generate an isometry group G

and induce subdivision of vertices and oriented edge segments of P into equivalence
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classes, such that an edge segment does not contain two G-equivalent points in its

interior.

Face pairing identifications are isometries satisfying conditions (a)–(c). They gen-

erate an isometry group G of a space of constant curvature.

(a) For each face fg−1 of P there is another face fg and identifying isometry g

which maps fg−1 onto fg and P onto P g, the neighbour of P along fg.

(b) The isometry g−1 maps the face fg onto fg−1 and P onto P g−1
, joining the

simplex P along fg−1 .

(c) Each edge segment e1 from any equivalence class (defined below) is successively

surrounded by polyhedra P , P g−1
1 , P g−1

2 g−1
1 , . . . , P g−1

r ...g−1
2 g−1

1 , which fill an

angular region of measure 2π/ν, with a natural number ν. An equivalence

class consisting of edge segments e1, e2, . . . , er with dihedral angles ε(e1),

ε(e2), . . . , ε(er), respectively, is defined as follows.

Let us consider an edge segment, say e1, and choose one of the two faces denoted

by fg−1
1

whose boundary contains e1. The isometry g1 maps e1 and fg−1
1

onto e2 and

fg1 , respectively. There exists exactly one other face fg−1
2

with e2 on its boundary,

furthermore the isometry g2 mapping e2 and fg−1
2

onto e3 and fg2 , respectively, and

so on. We obtain a cycle of isometries g1, g2, . . . , gr according to the scheme

(2.1)
(
e1, fg−1

1

)
g1→ (e2, fg1) ;

(
e2, fg−1

2

)
g2→ (e3, fg2) ; . . . ;

(
er, fg−1

r

)
gr→ (e1, fgr)

where the symbols are not necessarily distinct. More precisely, we have two essentially

different cases for the scheme (1).

1: if a plane reflection mi = gi occurs then ei+1 = ei, and we turn back to e1,

then, say, e−1 comes. Furthermore, another plane reflection m−j = g−j shall

appear in the cycle. Then each edge segment comes two times in the scheme

(1), and the cycle transformation is of the form

c = g1g2 . . . gr =
(
g1 . . . gi−1mig

−1
i−1g

−1
1

) (
g−1
−1g

−1
−j+1m−jg−j+1g−1

)

2: there is no plane reflection in the cycle; this will be the simpler case. (In

dimension 3 we have 5 subcases for the edges at all [3]).

In other words the segment e1 is successively surrounded by polyhedra

P, P g−1
1 , P g−1

2 g−1
1 , . . . , P g−1

r ...g−1
2 g−1

1
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which fill an angular region of measure 2π/ν. In the above case 1. the following holds

(2.2) ε(e1) + · · ·+ ε(ei) + ε(e−1) + · · ·+ ε(e−1+j) = π/ν.

In case 2. we have

(2.3) ε(e1) + · · ·+ ε(er) = 2π/ν.

Finally, the cycle transformation c = g1g2 . . . gr belonging to the edge segment class

{e1} is a rotation, say, of order ν. Thus we have the cycle relation in both cases

(2.4) (g1g2 . . . gr)
ν = 1.

Throughout in this paper we shall apply the specified Poincaré theorem:

Theorem 2.1. Let P be a polyhedron in a space S3 of constant curvature and G be

the group generated by the face identifications, satisfying conditions (a)–(c). Then

G is a discontinuously acting group on S3, P is a fundamental domain for G and

the cycle relations of type (2.4) for every equivalence class of edge segments form a

complete set of relations for G, if we also add the relations g2
i = 1 to the occasional

involutive generators gi = g−1
i .

3. Isometry groups of simplices and their supergroups

3.1. SIMPLEX T19

Face pairing isometries for simplex T19 (6a, 6b) (Figure 1) are

r0 :

(
A1 A2 A3

A3 A2 A1

)
; r1 :

(
A0 A2 A3

A2 A0 A3

)
; r2 :

(
A0 A1 A3

A3 A1 A0

)
; r3 :

(
A0 A1 A2

A0 A2 A1

)
.

Relations for the isometry group are obtained by Theorem 2.1 and the presentation

is

Γ(T19, 6a, 6b) =(r0, r1, r2, r3 − r2
0 = r2

1 = r2
2 = r2

3 = (r0r1r2r1r0r3)
a =

(r3r2r0r2r3r1)
b = 1; a, b ∈ N).

Considering vertex figures on a symbolic 2-dimensional surface (plane) around the

vertices, we can glue a fundamental domain for the stabilizer subgroup, e.g. Γ(A2) of

vertex A2. Transformation r1 maps vertex A2 onto A0 and TA2 onto T r1
A0

. That means

that TA2 and T r1
A0

have a joint edge corresponding to the joint face fr1 of simplex T .

Similarly, vertex figures TA2 and T r3
A1

have joint edge corresponding to fr3 , and T r3
A1

and T r0r3
A3

to (fr0)
r3 . One fundamental domain for Γ(A2) (Figure 2) is

PA2 := T r1
A0
∪ TA2 ∪ T r3

A1
∪ T r0r3

A3
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Figure 1. The simplex T19

Figure 2. The fundamental domain PA2 for ΓA2

and the generators for Γ(A2), obtained from PA2 , are

r3r0r2r1 : (fr2)
r0r3 → (fr2)

r1 ; r0 : fr0 → fr0 ; r1r3r1 : (fr3)
r1 → (fr3)

r1 ;

r3r2r3 : (fr2)
r3 → (fr2)

r3 ; (r3r0)r1(r0r3) : (fr1)
r0r3 → (fr1)

r0r3 .

In the diagram for PA2 the minus sign in notations a−, b− means that edges in these

classes are directed to the considered vertex, (the plus sign in diagram means the

opposite direction).

When parameters a, b are large enough, namely 1/a + 1/b < 2, by angle sum

criterion for PA2 , then simplex T is hyperbolic with the vertices out of the absolute

[9]. Then it is possible to truncate the simplex by polar planes of these vertices. In

such a way we get a compact trunc-simplex (with 8 faces) denoted by O19(6a, 6b). If

we equip O19 with additional face pairing isometries, it will be a fundamental domain

for a group Γj(O19, 6a, 6b) which will be a supergroup of Γ(T19, 6a, 6b). We require,

also later on, that the new generators keep the original simplex face structure. A



308 MILICA STOJANOVIĆ

trivial group extension with plane reflections mi, i = 0, 1, 2, 3, in polar planes of the

outer vertices Ai is always possible (Figure 3). Then the new group, by Theorem 2.1

is

Γ1(O19, 6a, 6b) =(r0, r1, r2, r3,m0,m1,m2,m3 − r2
0 = r2

1 = r2
2 = r2

3 =

m2
0 = m2

1 = m2
2 = m2

3 = (r0r1r2r1r0r3)
a = (r3r2r0r2r3r1)

b =

m0r3m0r3 = m1r2m1r2 = m2r0m2r0 = m3r1m3r1 = m0r2m3r2 =

m1r3m2r3 = m0r1m2r1 = m1r0m3r0 = 1).

Figure 3. The trunc-simplex O1
19 with trivial group extension

There is a further possibility to equip the new triangular faces with face pairing

isometries (Figure 4). New additional face pairings of O19 have to satisfy the follow-

ing criteria. Polar plane of A2 and so stabilizer Γ(A2) will be invariant under these

new transformations, fixing A2, and exchanging the half spaces obtained by the polar

plane. Thus, fundamental domain PA2 is divided into two parts, and the new stabi-

lizer of the polar plane will be a supergroup for Γ(A2), namely of index two. Inner

symmetries of the PA2-tiling give us the idea how to introduce a new generators. Let

g be the glide reflection as a composition of the translation in the plane of the vertex

figure with a reflection in this plane. Then g maps the vertex figure TA2 onto T r0r3
A3

and T r0r3
A3

onto T r1r2r0r3
A2

, equivalent to TA2 . Then g also maps T r1
A0

onto T r3
A1

and T r3
A1

onto T r2r0r3
A0

, equivalent to T r1
A0

. In that case the new generators for Γ2(O19, 6a, 6b)

will be g1 and g2 = r1g1r0 in Figure 4, while the new group, by Theorem 2.1 is

Γ2(O19, 6a, 6b) = (r0, r1, r2, r3, g1, g2 − r2
0 = r2

1 = r2
2 = r2

3 = (r0r1r2r1r0r3)
a =

(r3r2r0r2r3r1)
b = r3g1r2g

−1
1 = g1r3g2r2 = g1r0g

−1
2 r1 = r0g2r1g

−1
2 = 1).
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The PA2-tiling in the polar plane of A2 do not allow other identifications on the

truncated simplex O19.

Figure 4. The trunc-simplex O2
19 with non-trivial group extension

Fundamental domains T19 and Oj
19 (j = 1, 2) above, allow to divide them to smaller

polyhedra, equipped with face pairing identifications. Namely, there is a half-turn h

h :

(
A0 A1 A2 A3

A1 A0 A3 A2

)

leaving invariant the tessellations of space with T19 or Oj
19, so groups Γ(T19, 6a, 6b)

and Γj(O19, 6a, 6b) are not maximal. The authomorphism groups 2
2Γ6(3u, 3v) of their

tilings ([8], [9]) have domains which are fundamental polyhedra of piecewise linear

bent faces. That domains are obtained by identifying equivalent points, under sym-

metry h, of simplex T19 (Figure 5), and consequently also each trunc-simplex Oj
19

above (j = 1, 2).

Since r3 = hr2h and r1 = hr0h, presented for a 6= b, maximal groups are now (with

u = 2a and v = 2b for the rotational parameters) by

2
2Γ6(3u, 3v) =(h, r0, r2 − h2 = r2

0 = r2
2 = (r0hr0hr2h)u =

(r2hr2r0)
v = 1; u = 2a, v = 2b)

and

Γ(Q, 3u, 3v) = (h, r0, r2,m1,m2 − h2 = r2
0 = r2

2 = m2
1 = m2

2 = (r0hr0hr2h)u =

(r2hr2r0)
v = m1r2m1r2 = m2r0m2r0 = m1r2m2r2 = m1r0m2r0 = 1; u = 2a, v = 2b).
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Figure 5. The fundamental domain of supergroup 2
2Γ6(3u, 3v)

If a = b then simplex T and trunc-simplex Oj have more symmetries. Then the

maximal supergroup for Γ(T19, 6a, 6b) is a Coxeter group, by [9], while the maximal

supergroup for Γj(O19, 6a, 6b) might have only the trivial extension, so it is also a

Coxeter group.

3.2. SIMPLEX T46

For T46(6a, 3b), the face pairing isometries are (Figure 6):

r2 :

(
A0 A1 A3

A3 A1 A0

)
; r3 :

(
A0 A1 A2

A0 A2 A1

)
; s :

(
A1 A2 A3

A2 A3 A0

)
,

and the tiling group is

Γ(T46, 6a, 3b) = (r2, r3, s− r2
2 = r2

3 = (s2r2s
−2r3)

a = (r2sr3)
b = 1; a, b ∈ N).

One fundamental domain for the stabilizer group Γ(A2) of the vertex A2 (Figure

6) is

PA2 := T r2s−1

A0
∪ T s−1

A3
∪ TA2 ∪ T r3

A1

and the generators are then

sr2r3r2s
−1 : (fr3)

r2s−1 → (fr3)
r2s−1

; s2r2s
−1 : (f−1

s )s−1 → (fs)
r2s−1

;

r3s : (fs−1)r3 → fs; r3r2r3 : (fr2)
r3 → (fr2)

r3 .

The stabilizer Γ(A2) of PA2 above is hyperbolic iff (again by the angle sum criterion

for PA2) 2/b + 1/a < 2. Then truncating the simplex by polar planes of the vertices,
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Figure 6. The simplex T46 and the fundamental domain PA2

a new trunc-simplex O46 may have plane reflections as face pairing isometries of the

new faces. In this case the new group is (Figure 7)

Γ1(O46, 6a, 3b) =(r2, r3, s, m0,m1,m2,m3 − r2
2 = r2

3 = m2
0 = m2

1 = m2
2 = m2

3 =

(s2r2s
−2r3)

a = (r2sr3)
b = m0r3m0r3 = m1r2m1r2 = m0r2m3r2 =

m1r3m2r3 = m2sm3s
−1 = m3sm0s

−1 = m1sm2s
−1 = 1).

Figure 7. The trunc-simplex O46

Other possibility, by symmetries of the fundamental domain PA2 is the group ex-

tended by the point reflection z, indicated in Figure 6. This point reflection reflection

z (say) maps the triangle of A2 to that of As−1

3 and triangle of Ar3
1 to that of Ar2s−1

0

in PA2 (Figure 6). Thus, the above z induces new generators g1 and g2 as glide
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reflections, pairing the truncations at A2, A3 and those at A1, A0, respectively.

Γ2(O46, 6a, 3b) =(r2, r3, s, g1, g2 − r2
2 = r2

3 = (s2r2s
−2r3)

a =

(r2sr3)
b = r2g2r3g

−1
2 = g2r2g

−1
1 r3 = sg1sg

−1
2 = g1s

−1g1s
−1 = 1).

If r0 and h are similarly introduced, as in the previous section, so that r3 = hr2h

and s = r0h hold. Then the maximal group 2
2Γ6(3u, 3v), now with u = 2a, v = b, will

be supergroup of Γ(T46, 6a, 3b), and Γ(Q, 3u, 3v) extends Γj(O46, 6a, 3b) (j = 1, 2) as

well.

3.3. SIMPLEX T59

In the case of the simplex T59(3a, 3b) the face pairing identifications are (Figure 8)

s1 :

(
A1 A2 A3

A2 A3 A0

)
; s2 :

(
A0 A1 A3

A2 A0 A1

)

and the presentation of the group is

Γ(T59, 3a, 3b) = (s1, s2 − (s2
1s2)

a = (s2
2s
−1
1 )b = 1; a, b ∈ N).

The stabilizer group Γ(A0) has fundamental domain (Figure 8)

PA0 := T
s2
2

A3
∪ T s2

A1
∪ TA0 ∪ T

s−1
2

A2

and the generators

s−2
2 s1 : (fs−1

1
)s2

2 → fs1 ; s−1
2 s1s

−1
2 : (fs−1

1
)s2 → (fs1)

s−1
2 ; s2s1s

2
2 : (fs−1

1
)s−1

2 → (fs1)
s2
2 .

Figure 8. The simplex T59 and the fundamental domain PA0

There are two possibilities for the isometry group with trunc-simplex O59 as a

fundamental domain, iff 1/a + 1/b < 1. In the trivial case, group is (Figure 9)
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Figure 9. The trunc-simplex O59

Γ1(O59, 3a, 3b) =(s1, s2, m0, m1, m2, m3 −m2
0 = m2

1 = m2
2 = m2

3 =

= (s2
1s2)

a = (s2
2s
−1
1 )b = m2s1m3s

−1
1 = m3s1m0s

−1
1 =

m1s1m2s
−1
1 = m3s2m1s

−1
2 = m1s2m0s

−1
2 = m0s2m2s

−1
2 = 1).

Taking g1 and g2 = s−1
2 g1s

−1
2 as a new generators, other possibility for the group is

Γ2(O59, 3a, 3b) =(s1, s2, g1, g2 − (s2
1s2)

a = (s2
2s
−1
1 )b = g1s1g2s1 = g1s2g1s2 =

s2g2s2g
−1
1 = g2s

−1
1 g2s

−1
1 = 1).

Since, it is possible to express the face pairing isometries s1 and s2 of T59 by h, r0,

r2: s1 = r0h and s2 = r2h, the groups 2
2Γ6(3u, 3v) and Γ(Q, 3u, 3v) are supergroups

of the groups Γ(T59, 3a, 3b) and Γj(O59, 3a, 3b), (u = a, v = b).

3.4. SIMPLEX T31

The face pairings identifications for the simplex T31(6a, 12b) are (Figure 10)

m :

(
A1 A2 A3

A1 A2 A3

)
; r :

(
A0 A2 A3

A2 A0 A3

)
; s :

(
A0 A1 A2

A1 A3 A0

)
.

The group presentation is

Γ(T31, 6a, 12b) =(m, r, s− r2 = m2 = (rmrs−1ms)a =

(rs2ms−2rs2ms−2)b = 1; a ≥ 1, b ≥ 1).

For the stabilizer group Γ(A1) one of the fundamental domains is (Figure 10)

PA1 := T s2

A2
∪ T s

A0
∪ TA1 ∪ T s−1

A3
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Figure 10. The simplex T31 and the fundamental domain PA1

with generators

srs−1 : (fr)
s−1 → (fr)

s−1

; s−1rs : (fr)
s2 → (fr)

s.

After truncating the simplex by the polar planes of the vertices, iff 1/b + 1/a < 4

trunc-simplex O31 may have only trivial group extension (Figure 11)

Γ(O31, 6a, 12b) =(m, r, s− r2 = m2 = (rmrs−1ms)a = (rs2ms−2rs2ms−2)b =

m3rm3r = m0rm2r = m1mm1m = m2mm2m = m3mm3m =

m1sm3s
−1 = m2sm0s

−1 = m0sm1s
−1 = 1; a ≥ 1, b ≥ 1).

Figure 11. The trunc-simplex O1
31

It is not possible to extend generators of T31 by h, since then a new reflection plane

on halfturn axis r would yield a = b and we got the richer family F.1.
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