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Abstract. Let E be a uniformly smooth real Banach space and T : E — FE be gen-
eralized Lipschitz ®-accretive mapping with ®(r) — 400 as r — +oo. Let {an}, {bn},
{en}, {a),}, {b),}, {c,} be six real sequences in [0, 1] satisfying the following conditions:

o0
(Dan + by +cp =al, + 0, + ¢, =1, (ii)nllngo b = lim_ b, = Jim c, =0, (iii)ngo b, = o0,

(iv)en, = o(by). For arbitrary xp € E, define the Ishikawa iterative process with errors
{zn}or o by (ISE): yn = al,zy + b, Sxp + € Un, Tnp1 = anZpn + bpSyn + cpiny,n > 0. where
S:FE — Fisdefined by St = f+z—Tx, f € E,Vz € E. Assume that the equation Tz = f
has solution and {u,},~,{vn},, are arbitrary two bounded sequences in E. Then the se-
quence {z,},-, converges strongly to the unique solution of the equation Tz = f. A related

result deals with approximation of fixed point of generalized Lipschitz ®-pseudocontractive
mapping.

!The author was supported by the National Science Foundation of China and Shijiazhuang Rail-
way Institute Sciences Foundation.
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1. INTRODUCTION

Let E be real Banach space and E* be the dual space on F. The normalized
duality mapping J : E — 2F" is defined by

Jv={f € E":<x, f>= |l [|fll = I} (1)

for all x € E, where < -,- > denotes the generalized duality pairing. It is well known
that if £ is an uniformly smooth Banach space, then J is single-valued and such
that J(—z) = —J(x),J(tx) = tJ(z) for all x € F and t > 0; and J is uniformly
continuous on any bounded subset of E. In the sequel we shall denote single-valued
normalized duality mapping by j. By means of the normalized duality mapping J.

In the following we give some concepts.

Definition 1.1. Let E be real Banach space, and T : E D D(T) — E be a
mapping with domain D(T) and range R(T). A mapping T is said to be strongly
accretive if for any x,y € D(T) there ezists j(x —y) € J(x — y) such that

<Tz—Ty,jx—y) >>kllz -yl (2)

for some constant k € (0,1). A mapping T is called ®-strongly accretive if for
any x,y € D(T) there exists j(x —y) € J(x — y) and a strictly increasing function
P : [0,00) — [0,00) with ®(0) = 0 such that

<Tx—Ty,jlx—y) >> 0(||lz —y|)||z — v (3)

The mapping T is called ®-accretive if, there exists a strictly increasing function
® : [0,00) — [0,00) with ®(0) = 0, and for any xz,y € D(T) there exists
jx —y) € J(x —y) such that

<Tz—Ty,jlx—y) >= (|lz — yl|) (4)

Recently, Zhou [6] proved the following result: Let X be real uniformly smooth
Banach space. Assume that A : X — X is Lipschitz ®-strongly accretive mapping
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with ®(r) — +oo as r — +oo. Let {a,}. - and {B,},-, be two real sequences in

(0, 1) satisfying the conditions: (i) 0 < a, < T n>0,where Ly =1+L,L>1

is Lipschitz constant of A; (i) ay, 5, — 0 as n — oo; (iii) %o: an(l — o) = oo.
Assume that {u,},—,,{v.} —, are two sequences in X nszaotisfying condition:
lun]l = o(an), ||vnl| — 0 as n — oo, and ||v,]| < 1,¥n > 0. Define S : F — E
by Sx = f4+ax—Tx,f € X,V € X. Then the Ishikawa iterative process

{xn},2y o € X defined by

xo € X,
Yo = (1= Bn)xn + a2y 4 v,, n >0,
1 = (1—ap)rn + Ty, +u,, n>0,

converges strongly to the unique solution of the equation T'r = f. One question arises
naturally: If 7" neither is Lipschitzian nor has the bounded range , whether or not
the Ishikawa iterative sequence {x,} -, converges strongly to the unique solution of
the equation Tx = f. It is our purpose in this paper to solve the above part question
by proving the following much more general result: Let E be an uniformly smooth
real Banach space. Assume that T': E — E is ®-accretive mapping, and T neither
is Lipschizian nor has the bounded range, then the Ishikawa iteration sequence with
errors generated by converges strongly to the unique solution of the equation Tx = f.

For this, we need to give the following concept and Lemma.

Definition 1.2. A mapping T : E — E is called a generalized Lipschitz mapping,
if there exists a constant L > 0 such that ||Tx — Tyl < L(1+ || Tz —Ty||), Vz,y € E.
Clear, every Lipschitz mapping is generalized Lipschitz mapping. However, general-

1zed Lipschitz mapping must not be Lipschitz. See the following example.

Example. Let £ = (—o0,+00) and T': E — E be

x—1, if =€ (—00,0),

r— /1= (z+ 1) if ze[-1,0),
Ty =

x+4/1—(x—1)2 if e l0,1],

x+1, if e (1,400).

Lemma 1.1. [4] Let E be a real Banach space, then for all x,y € E, there erists
j(x+y) € J(x+y) such that ||z +y|]* < ||z]* +2 <y, j(z+y) >.
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2. MAIN RESULTS

Now we prove the main the results of this paper. In the sequel, we always assume

that E is a uniformly smooth real Banach space.

Theorem 2.1. Assume that T : E — E is generalized Lipschitz ®-accretive
mapping with ®(r) — +oo asr — +oo. Let {an}, {bn}, {cn}, {a,}, {b.}, {c,,} be real
sequences in [0, 1] satisfying the following conditions: (i) a,+b,+c, = a,+b, +c), = 1;
(1) lim b, = lim b = lim ¢, = 0; (ii1) %0 b, = oo; () ¢, = o(by,). For arbitrary

xg € E, define the Ishikawa iterative process with errors {x,}," by (ISE):

(5)

{ Yn = Ty + U ST, + ) Un,
Tyl = ApTp + by Syn + Cply,
where S : E — FE is defined by Sx = f +x — Tx,Vx € E. Assume that the equation
Tz = f has solution and {u,} -, {vn}.—, are arbitrary two bounded sequences in E.
Then the sequence {x,} -, converges strongly to the unique solution of the equation
Tx=f.

Proof. Let ¢ be the solution of the equation Tx = f, then ¢ is the unique
solution. Since 7' is generalized Lipschitz ®-accretive, then there exists Ly > 0 such
that | Tz — Ty|| < Lo(1 + ||z — y||) and < Tz — Ty, J(z — y) >> O(||lx — y]|), for all
z,y € B, ie., [|Sz—Sy|| < L(1+|z—yl)), < Sz—Sy, J(z—y) >< [lz—y[*—2(ll=—y|)
where L = 1+Ly. Especially, for Vo € E, < Sx—Sq, J(x—q) >< ||[z—q||*—®(]|lz—q]|).
Observe that (ISE) is equivalent with

Yo = (1= 0n)xn+ BuSxy + Vo + (¢ — )
Tpr1 = (1—an)zn+ @Sy, + U, + ¢, (g —z4)

(6)
where V,, = ¢ (v, —q), Un, = ¢p(un—q), B =V, @, = b,. Then ||V,]| — 0 asn — oo,
U, || = o(by,). From form (6), we obtain that

lyn —all = (1 = Bu)(@n — @) + Bu(Swn — Sq) + Vi + ¢, (¢ — 2 ||

7
< (1= Bo+ Bl +)llen — gll + Bl + Vil @)
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i1 —qll = [[(1 = an)(@n — @) + @u(Syn — 5q) + Uy + calq — 2,) ||
< (I=an+anL(l =By + BaL+¢,) + cn)||lzn — 4l (8)
(L + B L? + LIVoll) + | Uall.

Furthermore, we have the following estimates

2¢ullwn — gl - N|#nga — 4l
< 2e0(1 = ap + anL(1 = By + Bl + &) + cu)||2n — g2
+2¢n(on(L + B L? + Llvall) + U |20 — g
< Ronn - Q||2 + Py,

where R,, = 2¢,(1—a,+a, L(1—B,+ 8, L+, +cn)+cn(an(L+ B, L2+ L||Va |+ Unll)
P, = cp(an(L + B, L* + L||V,||) + |Un|). And have

2(IVall + enllzn — alDllyn — 4l
< 2(IVall + cullzn — al)((1 = Bn + BuL + &)z — qll + BuL + [[Vall)
< 26,((1 = Bo+ Bl + &)llxn — qll* + 2/Vall (BuL + [[Val])
F2([IVall(V = B+ BuL + ¢,) + (B L+ [[on]) ]2 — 4]

< 20,((1=Ba+ Bul + &)llzn — qll* + 2/ Vall (8oL + [IVa])) (10)
HIVall(X = Ba + BuL + &) + € (BaL + VAl (L + [|l2n — qlf*)
< (26, + IVAID(X = Bu + BuL + ¢) + (B + [Val)) l2n = ql?)

+([Vall(X = Bn + 8oL + ) + (e, + 2[[Val) (B L + ([ Val])

where G, = (2¢, + HVnH)(l — B+ Bul + C'In) + ¢, (BuL + HVnH)v H, = (HVn”(l -
Bt Bu 4 €) + (€ 2Vl (BuL + [Vall). Set Ay = |I(Z5170 ) — (=t

I+{lzn—qll
. Yn—4q _ ITn—4g
D, = HJ(H”IFq”) J(1+||:cnqu)||’ then A, — 0, D, — 0 as n — oo. Indeed
o0 o0 o0
Yn—q Tn—(q Tn4+1—4q Tn4+1—q
—dn—d__ —nd __ and { } are all bounded, and —
{1+|Ixrqll}n:o’ {1+Hrnfqll}n:o’ I+lzn—qll J n—o ? ||lJrllﬂﬂrqll

Yn—Qq Yn—4q _ Tn—4q 3 3 3 4
Tl = 0 et — o |l — 0 as n — oo. Applying uniformly continuity

of J on any bounded subset, hence A, — 0, D,, — 0 as n — oco. Using Lemma 1.1
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and (8),(9), we may obtain

HI?H-I_QHZ

<

IN

IA

IN

(1= ) (@n — @) + an(Syn — Sq) + Up + calq — @) |I?

(1 —an)?lzn — ql” + 20, < Sy, — Sq, J(n11 — q) >

+2 < Uy, J(ps1 — q) > +2¢, < ¢ — Tp, J(Tpy1 — q) >

(1 = a)?l|wn — q|* + 200, < Syn — Sq, J(yn — q) >

20, < Sy — 8¢, J (@1 —q) = J (Yo — @) >

2(|Unll - [Zn+1 — gl + 2callzn — gll - (201 — 4]

(1 = an)?|[zn = ql* + 200 (llyn — all> = 2(lya — all))

+200m, < Syn — 8¢, J(it=g) — J (Tt ) > A+ llzn —ql)
+2[|Upn||(1 — ap + an L(1 — By + B L+ €,) + ) ||xn — ¢
+2||Unll(n L + cno L2 + ay LIIVo || + |Unll) + Rullzn — gl + Py
(1= an)?[zn — ql” + 2an(lyn — all* = (llyn — ql)))

+20, An L(L+ |y — alD(L + [z — qll) + En + Py + Rullzn — ql?
+2||Un||(1 = an + o L(1 = B + BuL))||2n — 4

where E,, = 2||U,||(an L + @B, L* + o, L||V,|| + ||Uy]|)- Furthermore,

2|Unl|(1 = an + anL(1 = B + BuL + ¢},) + cn)l|lzn — 4l

< U = an + @ L(1 = B+ oL+ c,) + cn)* + llzn — ql?)  (12)
< UMy + | Unllll2n — qll?,

20, An L(1 + [Jyn — gl (X + [lzn — ql])

20, An L((1 = B + Bl + &) |20 — gl + 14 8L + [[oal) (1 + [z — gl])
Qo AnL(1 + BoL + ) (1 + ||z — q|?)

Follzn — q|? + F,

<

(13)

where M; = sup{(1 —a, + a, L(1 = B, + B, L+ ) +¢,)*}. Fn, = 4a,AL(1 +
BnL + ¢). Substituting (12) and (13) in (11), we have

e —al* < (1= ) + Fo 4 Bo + [|Unl)ll2n — gll* + En + Fy

(14)
+ P+ UMy + 200 (lyn — qll* = @(lyn — dll))-
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Again using Lemma 1.1 and (10), we obtain

1y =l < (1 = Bu)*wn — qll* + 28, < Swn — Sq, J(yn — q) >
F2([Vall + enllzn — gl lyn — 4l
< (1= Bn)?lln — ql” + 260 < Sz — Sq, J(yn — q) — J (20 — q) >
+206, < Sz, — Sq, J(x, — q) > +G,||z, — q|]* + H,
<1+ B85+ Go)llwn — gl = 268.2(|Jzn — gll) + Ha (15)
200 < Swn — Sq. J (7)) — I (gD > U+ flzw — all)
<L+ 87+ Go)llwn — gl = 268.2(|Jzn — gll) + Ha
+20Szn — Sql|Dp(1 + ||z, — 4
<(L+ 8% + Gy + 4B, D L)z, — g

Substituting (15) in (14), get

|1 —ql? < (14 a2+ Fy+ Ry + |Up|| + 200 (32 + Gy + 43,D,, L))
X||n — ql|> + By + Fo + Py + |Ua| My + 20, H,
+80n B Dy L — 200, ( (|9 — ) (16)
~40,3,2([|2n — ql) |20 — qll)

< lan —all® + Lillzn — all* + 200(0n — @([lyn — all))

where I,, = o2 + F, + R, + ||U,| + 2a,,(3* + G, + 43.D, L), O, = (E, + F, +
P, + |U,|| My + 20, H,y, + 8, 3, Dy L) /20, Base on definition of S, for any Vo € F,
< Sx—Sq—x+q,J(x—q) >< —P(||z—q||). Thus, ®(||z—q||) < ||lr—Sz||. Any choose
xo € E such that ||zg — Sxo|| # 0, i.e,xg # q. If xg = ¢, then we are done. Suppose
this is not the case, then have ||zo—g|| < ®7'(||zo—Szo|). Since ay,, 5, — 0(n — o),
so that I,, = o(a,), O, = o(an), ||Us|| = o(a,,) and ||V,]| — 0(n — oo), there exists

positive integer N such that

@ (Jlzo—Szol]) B, < 20~ (on Szol|) ||U || <2 (llwo—Szoll)
(1T L+L2)d (oo —Szol) 1202 4L’ Pn < 3(11L)d 1 (Jlwo— Sxoll )+3L" 2

[Vall < min {1, M} 1= B = Bl — )y > 2, BuL + ||Vp]| < Ellzo=Smol)

&(2Ulmg=Sag))

SN
2

a, <

Y

I, (281 (||xzo—Sz0l]))
20

+O<

for all n > N. Suppose ||zny — q|| <
20 1(||xg— Sxo||) holds, we prove ||zni1—q|| < 207 (||zg—Szo||). Assume that this is
not true, then ||zyy1—q|| > 20 (||zg—Szo||). From (6)we may get (1—ay)||zy—q|| >
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[zn11 =gl —anlley = Syn || = [[Un || —exllzy — gl (N is enough big, 1 —ay+cn < 1).
We also obtain the following inequality:
len —qll = llzns —all — anllzn — Syl — |UN||
> 207([|zo — Swo|)
an(2(1+ L+ L) ([|lwo — Szol|) + L* +2L) — [|Ux||
= (]Jzo — Szoll)

vV

and
lyv —all = (1 =Bn)llen —all = BuLllzn — qll = BuL — [Vl — cyllzn — 4|

(
= (I -08n—BnL—cy)llzny —q|| = BnL — ||V
> - 1(||$0 SCUOH)’

so that ®(|lyn — ¢||) > @(w). Using (16) and above relevant form, we

compute as follows:

lenss —all? < llew — gl + Inlley — alf? + 2an(0x — 2(lyn — 4ll))
< law = qlf? + 20 (2215 4 O — B([lyy — q]))
< oy — qf)? — an®(tleg=Srell)
< oy — ql* < (207 (||lzo — Sxol]))*

contradicting with assumption. By induction, so sequence {||z, — ¢||},—, is bounded,
therefore {Hyn —ql|}2, is also bounded. Set W = sup {||z, — ¢||} + sup {||y» — ql|},
Q= 20~ ® 4+ O, Then using (16), we have

s — ql? <l — qll? + 20, (222=4E 1+ 0, — & (|ly, — ql]))
S ||xn_Q||2+2an(Qn_(I)(Hyn_qu)) (17)
= Hxn - q||2 + O‘NQQn - CI)(Hyn - q“)) - an@(”ﬁyn — QH))

In the following we prove that lim inf llyn—q|| = 0 holds. If not true. Let Jim inf |y —
q|| = 26 > 0. Then, there exists an integer N; such that ||y, — ¢l >, Yn > Ny, i.e.,
O(||lyn — ql|) = ®(0). Since @, — 0(n — o0), there exists positive integer No > Ny
such that @, < ®(J),Vn > Ny. The implies that @, < ®(||y, — ¢||). Hence, for all
n > Ny, we obtain that

Hxn-&-l - q||2 < Hxn - q”2 - oanI)(”yn - q”)) < Hxn - q||2 — ap,®(9).
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This implies that
®(0) > an < D (lon — all* = o — all?) < llow, —all* < 00
n=Ns n=N»

contradicting with condition (iii) of Theorem. So there exists a infty subsequence
{ynj — q}j:O of {yn — q},—o- Again from (6), get ||y, — qll > (1 — Bn, — Bn, L —
)| Tn; = all = Ba; L — || Vi, ||, so that jli_{gO |zn; — ¢l = 0. Hence, for any Ve > 0,
there exists a positive integer nj,, such that ||z, —q|| <&, an, (LW + L) + ||Uy,|| <
5 Bny + B, L+, )W + (B, L+ ||Viy[|) < §, for all nj > nj,. Again choose a positive
integer Ny > nj, such that @, < @(g)%, for all n > Ny. Next, we want to prove: for
arbitrary m > 1|z, 4m — ql| < €,n; > ny,. First, we prove that ||z, 41 —¢|| <e. If
it is not the case, then there exists nj > nj, such that ||z, y1 —¢|| < e. Using (6)

again, we have

120y, +1 = all < (1= amy M@ny, = all + any (1Y, — Sall + |Uny, | + cny, 120, — 4l
< (1= any, + o) llny, —all + ang, L+ ([yn,, —all) + 1Un,, |
< lwny, —all + an, LI+ W) + [[Uy,, |
< law, —dall +5

lead to ||z, — qll > [[n, +1 — ¢l — § > 2. And we get also
1y, —all = (0= Buy)ln;, = all = Buy, Llln;, — all + 1) = [IVay, | = ¢, [l2n;, — 4l
> Mwng, = all = (Buy, + oy, L+ e ln;, = all = (Buy, L+ 1V, )
= Buyy + By L+ JW = (B L+ Vi, )

VvV Vv
N ™

Hence ®(|[yn,, — ql|) > ®(5). By(16), we obtain that

e < lan, 1 —al?

< ey, = ql* + 200, (Qn;, — ([|yny;, —all))
< &2 20, ((5)5 — (5))
eV1
= &’ — a"j1(1)(§)§
< g

contradiction. By induction, we obtain that ||y, 4 —¢|| < €. This show that z, — ¢

as n — o0o. Completing proof of Theorem 2.1. a
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Remark 1. Theorem 2.1. contains a good number of the known results as its
special cases. In particular, if the mapping 7T considered here satisfies one of the
following assumptions: (i)T : K — K is a Lipschitzian. (ii) T has the bounded
range. Then T satisfied the conditions of Theorem 2.1.

Remark 2. It is well known that T is strongly pseudocontractive (®-strongly
pseudocontractive, ®-pseudocontractive) if and only if (I —T) is strongly accertive(®-
strongly accretive, ®-accretive), where I denotes the identity operator. In the follow-

ing we give about the results of ®-pseudocontractive.

Theorem 2.2. Let K be nonempty closed conver subset of E and T : K — K
be generalized Lipschitz ®-pseudocontractive mapping. Assume that ®(r) — +oo as
r— 400 and F(T) # 0. Let {a,}, {bn}, {cn}, {al}, {U,}, {c.} be siz real sequences
in [0,1] satisfying the following conditions: (i) an + by, + ¢, = a, + b, + ¢, = 1; (ii)
lim b, = lim b}, = lim ¢, = 0; (i) niojo b, = o0; (i) ¢, = o(b,). For arbitrary

xo € K, define the Ishikawa iterative pmgess with errors {z,} -, by (ISE):
Yo = a,x,+b Tx,+ v, (18)
Tpt1l = QpTp+ bnTyn + Cplip,

Suppose {un}, o, {vn} .y are arbitrary two bounded sequences in K. Then the se-

quence {z,} —, converges strongly to the unique fized point of T

Proof. Applying Theorem 2.1., we obtain directly conclusion of Theorem 2.2. O

Remark 3. Our two Theorems extend the main known results from Lipschitzian
or the boundedness range to more general class of neithe Lipschitzian nor the range
boundedness mappings, and also from strongly pseudocontractive (accretive) to -

pseudocontractive (accretive).
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and suggestions.
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