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INTRODUCTION

From the Introduction and the Epilogue of d’Arcy Thompson’s ”On Growth and

Form” [7], respectively, we quote the following: ”The search for differences or fun-

damental contrasts between the phenomena of organic or inorganic, of animate or

inanimate things, has occupied many men’s minds, while the search for community

of principles or essential similitudes has been pursued by few; ... things animate and

inanimate, we dwellers in the world and this world wherein we dwell are bound alike

by physical and mathematical law”.

We aim to show that honeycombs and shells, crystals and galaxies, DNA-molecules

and flowers, stems, tissues and pollen grains of plants, etc. and the relativistic space-

time universe itself, in accordance with similar natural curvature conditions, all do

assume shapes with similar geometrical formal descriptions.
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1. ON THE GEOMETRY OF ”WHAT DWELLS IN THE WORLD”

Let x and y denote Cartesian co-ordinates in a plane R
2. Then the equation of

the circle of radius r which is centered at the origin O is given by x2 + y2 = r2 and

the equation of the ellipse of axes a and b 6= a which is centered at the origin is given

by
(

x
a

)2

+
(

y
b

)2

= 1.

Figure 1. Circles and ellipses

Going back to Lamé, the circles and the ellipses, as well as the squares and rect-

angles which are also shown in Figure 1, are all included in the family of the so-called

”superellipses”, i.e. the planar curves given by Cartesian equations of the form
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(whereby p,A,B ∈ R
+
0 ; both cases A = B = r and A = a 6= b = B thus being dealt

with by the same equation).

Figure 2. Supercircles and superellipses



59

Turning to polar co-ordinates ρ and θ, such that x = ρ · cos θ and y = ρ · sin θ,

when in addition introducing a coefficient m
4

(which allows to yield more particular

symmetries of rotation around O than those related to the 4 quadrants of the Carte-

sian co-ordinate system) and when moreover giving ”independence” to the exponents

occurring in the three terms of equation (1), this equation becomes
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(whereby n1 ∈ R0, n2, n3 ∈ R). Some examples, up to scale, of planar curves given

by a polar equation (2), whereby in each case here A = B and for which further,

respectively, in case (a) : m = 3, n1 = 4.5 and n2 = n3 = 10, in case (b) : m =

4, n1 = 12 and n2 = n3 = 15, in case (c) : m = 5 and n1 = n2 = n3 = 4 and in case

(d) : m = 7, n1 = 10 and n2 = n3 = 6, are shown in the following figure.

Figure 3. Curves (a), (b), (c) and (d) given by equation (2)

These curves pretty accurately describe the shapes of the Nuphar luteum petiole

(a) and the stems of Scrophularia nodosa (b), Equisetum (c) and Raspberry (d),

respectively. Similarly, for instance different kinds of starfish correspond to curves

given by equation (2) for A = B and further, respectively, in case (e) : m = 5, n1 = 2

and n2 = n3 = 7, and in case (f) : m = 5, n1 = 2 and n2 = n3 = 13.

Figure 4. Curves (e) and (f) given by equation (2)
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The planar curves given by polar equation (2) can in some sense be interpreted as

being obtained starting from the unit circle centered at 0 (ρ = 1) by the transformation

given by the right hand side of (2), (for any choice of parameters A,B,m, n1, n2, n3).

And, similarly, instead of thus transforming this unit circle, all planar curves deter-

mined by polar equations ρ = f(θ), (whereby f basically can be any positive real

function), can be thus transformed into the planar curves with polar equations

ρ = f(θ) ·
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The following figure, up to scale, shows in (b) and (c) such transformations with

parameters m = 2.5, n1 = 1

1.3
and n2 = n3 = 2.7 and, respectively, m = 2.5 and

n1 = n2 = n3 = 5, of the rose-curve of Grandi (a) with equation ρ = f(θ) = cos(2.5θ)

into ”superroses”.

Figure 5. A rose-curve (a) and two corresponding superroses (b) and (c)

And starting for instance from the logarithmic spiral (a) ρ = f(θ) = e0.2θ, by

transformation (3) with parameter m = 4 and n1 = n2 = n3 = 100 in case (b) and

m = 10 and n1 = n2 = n3 = 5 in case (c), respectively, up to scale, the following

”superspirals” are obtained.

Figure 6. A logarithmic spiral (a) and two corresponding superspirals (b) and (c)
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What is briefly stated above concerning curves in 2D-planes can readily be ex-

tended to curves and surfaces in 3D-spaces, (and for that matter to submanifolds of

any dimensions and codimensions). Instead of supercircles and superellipses then of

course ”superspheres” and ”superellipsoids” come into play. And, as in the case of

planar curves, also for space-curves and for surfaces in space, the geometrical trans-

formations thus obtained in analogy with formulae (2) and (3) provide unifications

of wide ranges of natural and abstract shapes.

Figure 7. Some further curves in 2D with equation (2)

Figure 8. Some analogous surfaces in 3D

For more details and for a multitude of examples of natural shapes occurring in
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animals and in plants, in their cells and tissues, in snowflakes and spider-webs, in

crystals and in fluid-currents, etc. etc., and which are so accurately described by

such transformations, either directly by one of them individually or indirectly by

some natural combination of a few of them, see [2, 6, 5]. Following Piet Hein, in these

publications the first named author and his coworker Bert Beirinckx used the term

”superformula” for the equations and transformations like (2) and (3). In the last

named author’s Kragujevac-talk ”On Geometry and Natural Philosophy”, of which

this article is a written echo, the transformations and the curves and the surfaces

given by (2) and (3) and the like, alternatively were called Gielis-transformations,

-curves and -surfaces too (to which the first author did not protest, maybe also due

to the fact that he was not there). Anyway in particular in [1], the origins of the

above observations were traced back to Piet Hein’s ”supereggs” (”superellipsoïds” of

revolution) as source of inspiration in trying to geometrically describe the shapes of

planar sections of bamboo stems.

Figure 9. Piet Hein

Also, e.g. in [7, 6] for such ”superforms” occurring in 2D-planes and in 3D-spaces,

arguments concerning various principles of natural optimisations are discussed, pre-

cisely in relation to their geometrical shapes, sometimes at length and sometimes more

briefly. Finally, we remark that the 2D- and 3D-hyperbolic versions of the above su-

performula’s of elliptic type indeed merit seriously to be taken in consideration as

well.
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Figure 10. ”Square” bamboo

2. ON THE GEOMETRY OF ”THE WORLD IN WHICH WE DWELL”

The purpose now is to show that, on top of the curves and the surfaces given by

formulae like the ones before, which from a purely geometrical point of view satisfy

natural conditions on their curvatures and which naturally do occur in the worlds of

physics, chemistry, geology, biology,... and, for that matter, also in the worlds of art

and technology (see e.g. [3, 4]), of all possible ”things” indeed also our relativistic

space-time universe itself is basically determined by similar curvature conditions and

described by similar formulae.

The physical space-times which are ideal submanifolds in the sense of Bang-yen

Chen [8, 9, 10] were recently studied by the latter-named two authors, in part also

together with Franki Dillen and Mira Petrović [11, 12]. Thus in particular some

Figure 11. Professor Lemaître of the University of Leuven
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space-time models of Georges Lemaître (in the literature also referred to as Friedmann-

Lemaître-Robertson-Walker space-times), show up like ”par excellence” as ideal hyper-

surfaces in Minkowski spaces. These space-times also are at the origin of the so-called

”big bang”-theories. In this respect, and so much more appropriately, Lemaître him-

self used the terms ”primitive atom” and ”cosmic egg”, the latter one especially giving

a most beautiful image of ”the beginning” of ”the life” of ”our cosmos”.

From the formal point of view, a Robertson-Walker metric on R
4 is given in local

co-ordinates (x, y, z, t) by

ds2 = −dt2 +

{

c(t) ·

[

1 +
k

4

(

x2 + y2 + z2
)

]}−2

·
(

dx2 + dy2 + dz2
)

,

(k = +1, 0 or − 1),

(4)

whereby the space-slices of the full space-time at any given time t are Riemannian

3D-spaces of constant curvature c(t). By way of visualisation in 2D-rather than in 4D-

representation, such metrics are carried for instance by surfaces of revolution in 3D-

space; (and to go from the geometry of such surfaces to the Riemannian geometry of

general warped products, see [13, 14]). The transformations of the flat Euclidean 3D-

Pythagorean metric ds2 = dx2 + dy2 + dz2 into 3D-metrics of any constant curvature

by multiplication with appropriate functions are essentially due to Riemann and von

Helmholtz in their studies on the foundations of geometry via, as they respectively

approached this, hypotheses and facts [15, 16]. Bearing in mind that, in the words

of Chern [17], ”While algebra and analysis provide the foundations of mathematics,

geometry is at the core”, it seems worthwhile from time to time to reflect somewhat

on both these great texts, in particular in the light of the origins of geometry as field

of mathematics based on the physical geometrical experiences that humans have by

their, visual and other, sensations and perceptions. In space-time metrics like (4)

one may observe, on the one hand, the conformal deformations of flat space-metrics

to metrics of constant spatial curvature (=, < or > 0) which may change in the

course of time, and, on the other hand, a hyperbolic twist in the line-direction, which

further might include a speed of light-normalisation, which all in all amount to formal

deformations of the theorem of Pythagoras quite alike the above supertransformations
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relate to the equation of Euclidean circles or spheres. In this context we additionally

remark in connection with the so-called supercircles that already in the very first talk

on his geometry, Riemann explicitly mentioned the geometric tangent 2D-indicatrix

x4 +y4 = 1 as a relevant extension of the Euclidean circle x2 +y2 = 1, thus conceiving

of the special Riemann-Finsler metrics

ds =

{

n
∑

i=1

(

dxi
)p
}

1

p

;

(for recent work of Chern e.a. on Riemann-Finsler geometry and of Miron e.a. on

Lagrange geometry, among others in relation to Hilbert’s variational problem 23, see

e.g. [18]).

It could be reminded for instance that the rotational surfaces of Delaunay, i.e.

those of constant mean curvature H, (planes and catenoïds for H = 0, spheres and

circular cylinders and unduloïds and nodoïds for H 6= 0), do effectively occur in

various fields of the natural sciences. The geometrically natural curvature conditions

alluded to before concern on the one hand, in their simplest form, the constancy of cur-

vatures like the mean curvature H (expressing uniform surface tension) or the Gauss

curvature K (for surfaces M in say Euclidean 3D-space, or, similarly, the sectional

curvature K for general Riemannian spaces, whose constancy as shown by Riemann-

von Helmholtz-Lie amounts to satisfying ”the axiom of free mobility”), and thus are

examples of realizations of basic symmetries or still of classical variational optima.

On the other hand, the geometrical natural curvature conditions mentioned before

concern the realizations of equalities in the optimal inequalities which are known

to hold between various scalar-valued curvatures of all submanifolds. In particular,

such inequalities give inevitable relations between curvatures which fundamentally

relate to the intrinsic nature of these submanifolds (like their sectional curvatures,

their scalar Riemannian curvature τ which averages the sectional curvatures, and,

more generally, all their recently introduced Chen-curvatures, which together give

like the DNA-structure of the Riemannian manifolds involved) and curvatures which

fundamentally relate to the shape which these submanifolds assume in their ambient

world, i.e. extrinsic curvatures (as being expressed by the second fundamental form
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h and the normal curvature tensor R⊥, the most basic of which is the squared mean

curvature H2, expressing the submanifold’s surface tension). For all surfaces M in

Euclidean 3D-space, already Euler showed that always K ≤ H2 everywhere on M ,

equality holding at every point if and only if, according to a theorem of Meusnier,

M is either planar or spherical. The so-called Chen-inequalities generalise this Euler-

inequality concerning the dimensions and codimensions of the submanifolds involved,

concerning the kind of ambient spaces involved and concerning the kinds of intrinsic

and extrinsic curvatures involved. And a submanifold is said to be an ideal subman-

ifold in some space when it actually realizes at everyone of its points the equality

in such generally holding inequality. Given their intrinsic structures, which normally

submanifolds have the tendency rather not to change, ideal submanifolds thus expe-

rience the least possible external curvature which might be imposed on them by the

forms they assume in given surrounding worlds, much like in some sense experiencing

the least possible stress which the living conditions in these ambient spaces may im-

pose on the submanifolds, the creatures, which happen to live in these worlds. It is as

such, namely as ideal Lorentz-hypersurfaces in Minkowski-spaces, that in particular

also the Lemaître-universes naturally emerged in the recent studies mentioned before.

The submanifold’s curvature conditions discussed above, like the constancy or invari-

ance of certain curvatures and the Chen-inequalities, as well as other natural ones like

e.g. the Willmore-conditions [19], etc., in some sense all express variational principles

(see e.g. also [20]) along the lines studied in particular by d’Arcy Thompson.
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