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Abstract. The paper studies the convergence of one convex sequence to a fixed point
of nonexpansive mapping on g—orbitally complete normed spaces with A—uniform convex
sphere

1. INTRODUCTION, SOME NEW NOTIONS AND THE MAIN RESULT

Let X be metric space. For mapping f : F — E, E C X we say that it is

nonextensive if
d(f(x), f(y)) < d(z,y) (1)

Nonextensive mappings have been widely studied in relation to existantial fixed
point in normed spaces, e.g. by Browder [1], Karlovitz [2], Soneberg [9] , Kirk [3],
Reinermann [8], Opial [7], etc. A considerable contribution to calculating a fixed
point of nonextensive compact operator f : E — E, where F is a closed, limited and

convex subset of normed space X, over the sequence

Tp + f(xn)
Tn41 = #7
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has been given by Krasnoselskij [4].
This paper introduces notions like g—orbital completeness of space and spaces

with A—uniform convex sphere.

Definition. Normed space X is considered to be a space with A—uniform convex
sphere if for every e > 0 there is 6 > 0 so that for all x,y € X and || x —y ||> € it is
true that

Az + (1 = Ay [[< (1= o) max{]|| [ [y I}, A € (0,1) (2)

Let there be a mapping f : £ — E, E C X where X is normed space. Let us

define a function
gla, f@)) = M+ Ao+ 4+ 0) T (M + Ao f(2) + .o+ A 77 ()

NERN>01=12...p
The set

Og(z, f) = {g0(z, [ (x)), 1 (z, f () ga(; f()), .. .}

where go(z, f(z)) = = and gn(z, f(2)) = g(gn-1(z, f()), f(gn-1(z, f(2)))), is called

a sequence of convex orbits given by the function g. If each Cauchy’s sequence of

Og(x, f) converges to X then space X is g—orbitally complete.

Introduction of convex sequences for calculating fixed points of certain mapping
is justified by the fact that it is not always possible to reach a fixed point [6].

The point x of a convex set £ C X, where X is normed linear vector space, it is
called an extremal point, if z = Azy + (1 — XN)za, A € (0,1), 21,29 € E, then follows

1 =T =0.

Lemma. Let f : E — E be completely continual linear operator, where E is a

limited subset of normed space X, and J is a set of solutions of equation x = f(x) in

E.
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Let there be
R(J,a) ={a|z € E,d(z,J) > a}, a > 0.

Then for every x € R(J,a) and every a > 0 there is € = e(a) > 0 so that
| f(z) =z |[>e,
and the set of solutions J of equation x = f(x) is convex.

The proof of this lemma can be found in [5].

Theorem. Let there be a complete conctinual operator f = E — E where E is a
closed, limited and convex subset of normed space X with A—uniformly convex sphere.
If O is a extremal point of the set E, and for p > 3, X is g—orbitally complete space,

and for all x,y € E operator f satisfies the condition

I f(@) = fy) [ <z =yl

then the sequence

P “L /o '
Ty = (Z )\z> (Z )\if’Ll(xnl)) )
i=1 i=1
forme N, \; € R, A\, > 0,1 =1,2,....p and for arbitrary vy € E , converges at

least to one solution of the equation x = f(z)

Proof. We introduce the following mark
J={z|zeE z=f(z)}

On the basis of nonexpansiveness of operator f and by definition of a sequence

{Zn}nen we obtain that

P -1 P , .
dward) = nf o=y | < (EX) - b S0 @) - £ |
yeJ i=1 yeJ =1

IN

P -1 p
(En) Ayl
i=1 yeJ j=1
inf 3° A
= irelu; iz —y ||

= d(wy,y)
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Consequently, the sequence {d(z,,J)}, n € N, nonincreasing,.
Suppose now that for certain a > 0, xq,xs,..., 2, € R(J,a). On the basis of the

previous lemma it follows that for this a there is () so that
| (@) = [[>ela), i=1,2,... k.
Since space X with A—uniformly convex sphere, for each y € J we obtain:

D -1
laz=yll = (£)

P i P
;Aif (z1) — ; Ay

» -1
< (Z; Ai) (A1 4+ A2) Hﬁ(l’l —y)+ Al)f& (fa1 — fy)H +
ro T i—1 i—1
H(EA) SN ) - w) |
» -1
< (S3) Qo+d)=omax{ler—y || 21— fy 3+
P -1 p
+(Zx) Exla-yl
P -1 P
< (EA) ((eraa-o+ £ )20,
where
M =sup || t ||
teE
Similarly, we prove that
v -1 » k-1
| xp —y ||<2M - (Z )\Z-) . (()\1 + X)) (1 —0) + Z)V)
=1 =3

then it follows that

(i J) < 2M - (i A,) - ((Al £ 20)(1-8) + iA)

k—1

Since x; € R(J, a), then also || f(x;)—z; |> efori=1,2,...,k, and consequently

e S|l fla) =z 1<l flz) = f) [+ Ty =z IS 2 |z —y |
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that is || z; —y [|> 5 fori=1,2,... k,ye &

Now, we have

M- (fle)l ((/\1 + Xo)(1—4) +fjxi>“ > %

This inequality is valid if
-1
k<14 (In4M —Ine) (—ln <Z)\ > B (()\1 + X)(1=9)+ zp:)\Z))
i=3
Since the sequence {d(z,, J)}, n € N is nonincreasing, for
-1
n> 1+ (In4M — Ine) (—111 (Z)\ ) B ((Al + X)) (1 =96)+ Zp:)w-))
i=3
it is valid that

d(z,, J) < a,
then it follows
lim d(z,J) = 0. (3)
Based on the relation (3) it follows that for every 5 > 0 there is ny so that
d(xp,, J) < g,which implies that for certain yo € J it is true d(z,,,y) < g

For my, ma > ng there are inequalities

BLB_
272

Therefore, the sequence {z,},en is Cauchy’s and since space X is g-orbitally

=0

| Ty — Ty HSH Ty — Yo || + H Yo — Tmy HS

complete, then it is convergent in F. Let there be lim,, . z, =&

From the relation

p -1 p
Jin 1= Jim () ) =
i i=1

we get that
P
SN (€- ) =0
1=1
Since 0 is extremal point it is valid that £ = f(§) so sequence {x,}n,en converges

to at least one solution of equation = = f(x) .

This completes our proof.
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