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Abstract. The energy of a graph is the sum of the absolute values of its eigenvalues. Let
G and L2(G) denote the complement and the second iterated line graph, respectively, of the
graph G . If G1 and G2 are two regular graphs, both on n vertices, both of degree r ≥ 3 ,
then L2(G1) and L2(G2) have equal energies, equal to (nr − 4)(2r − 3)− 2 .

INTRODUCTION

Using the notation and terminology of the preceding paper [1], we denote by

λ1, λ2, . . . , λn the eigenvalues of a graph G and by n its order. The energy of the

graph G is then defined as E(G) = |λ1| + |λ2| + · · · + |λn| . Two graphs G1 and G2

are said to be equienergetic if E(G1) = E(G2) .

Let L2(G) denote the second iterated line graph of the graph G .
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In the paper [1] we proved the following:

Theorem 1. Let G1 and G2 be two regular graphs, both on n vertices, both

of degree r ≥ 3 . Then L2(G1) and L2(G2) are equienergetic, and E (L2(G1)) =

E (L2(G2)) = 2nr(r − 2) .

Here we demonstrate the validity of a similar result. Let G denote the complement

of the graph G .

Theorem 2. Let G1 and G2 be two regular graphs, both on n vertices, both

of degree r ≥ 3 . Then L2(G1) and L2(G2) are equienergetic, and E
(
L2(G1)

)
=

E
(
L2(G2)

)
= (nr − 4)(2r − 3)− 2 .

PROOF OF THEOREM 2

From [1] we know that if G is a regular graph of order n and degree r , then L2(G)

is a regular graph of order nr(r − 1)/2 and degree 4r − 6 . If λ1 = r, λ2, . . . , λn are

the eigenvalues of G , then the spectrum of L2(G) consists of the numbers

λi + 3r − 6 i = 1, 2, . . . , n

2r − 6 n(r − 2)/2 times

−2 nr(r − 2)/2 times





(1)

If G is regular of order n and degree r , then its complement G is a regular graph

of order n and of degree n− r − 1 . The spectrum of G consists of the numbers (see

[2] or Theorem 2.6 in [3]):

n− r − 1

−λi − 1 i = 2, 3, . . . , n



 (2)

Combining (1) and (2), we obtain that the eigenvalues of the complement of L2(G)

are:
nr(r − 1)/2− 4r + 5

−λi − 3r + 5 i = 2, 3, . . . , n

−2r + 5 n(r − 2)/2 times

1 nr(r − 2)/2 times





(3)
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The quantity nr(r−1)/2−4r+5 is necessarily positive–valued, because it is equal

to the degree of L2(G) . Evidently, −2r + 5 is negative–valued for r ≥ 3 . In order to

determine the sign of −λi − 3r + 5 , recall that all eigenvalues of a regular graph of

degree r lie in the interval [−r, +r] . Therefore, −λi ≤ r , i. e.,

−λi − r ≤ 0 . (4)

Because r ≥ 3 , we have

6− 2r ≤ 0 . (5)

Summing (4) and (5) we obtain −λi − 3r + 6 ≤ 0 , from which it follows that the

eigenvalues −λi − 3r + 5 are negative–valued for all i = 2, 3, . . . , n .

Knowing the signs of all eigenvalues of L2(G) , from (3) we can express its energy:

E
(
L2(G)

)
= [nr(r − 1)/2− 4r + 5] +

n∑

i=2

[−(−λi − 3r + 5)]

+ [−(−2r + 5)]× 1

2
n(r − 2) + [1]× 1

2
nr(r − 2)

which, bearing in mind

n∑

i=1

λi = 0 i. e.
n∑

i=2

λi = −λ1 = −r

yields the formula

E
(
L2(G)

)
= (nr − 4)(2r − 3)− 2 . (6)

From Eq. (6) we see that the energy of the complement of the second iterated line

graph of a regular graph of order n and degree r ≥ 3 depends only on the parameters

n and r .

Theorem 2 follows.

DISCUSSION

In full analogy with the corollaries of Theorem 1 (stated in [1]), we now have:

Corollary 2.1. Let G1 and G2 be two regular graphs, both on n vertices, both of

degree r ≥ 3 . Then for any k ≥ 2 , Lk(G1) and Lk(G2) are equienergetic.
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Corollary 2.2. Let G1 and G2 be two connected and non-cospectral regular graphs,

both on n vertices, both of degree r ≥ 3 . Then for any k ≥ 2 , both Lk(G1) and Lk(G2)

are regular, connected, non-cospectral and equienergetic. Furthermore, Lk(G1) and

Lk(G2) possess the same number of vertices, and the same number of edges.

Within Theorem 2 we obtained the expression (in terms of n and r) for the energy

of the complement of the second iterated line graph of a regular graph. Analogous

(yet much less simple) expressions could be calculated also for E
(
Lk(G)

)
, k ≥ 3 ,

i. e., the energy of the complement of the k-th iterated line graph, k ≥ 2 , of a regular

graph on n vertices and of degree r ≥ 3 is also fully determined by the parameters n

and r .
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