ANOTHER CLASS OF EQUIENERGETIC GRAPHS

Harishchandra S. Ramane,¹ Ivan Gutman,² Hanumappa B. Walikar,³ Sabeena B. Halkarni³

¹Department of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum – 590008, India , (e-mail: hsramane@yahoo.com)

²Faculty of Science, P. O. Box 60, 34000 Kragujevac, Serbia & Montenegro (e-mail: gutman@knez.uis.kg.ac.yu)

³Department of Mathematics, Karnatak University. Dharwad – 580003, India (e-mail: walikarhb@yahoo.co.in ; sabeena_h@yahoo.com)

(Received July 11, 2004)

Abstract. The energy of a graph is the sum of the absolute values of its eigenvalues. Let \overline{G} and $L^2(G)$ denote the complement and the second iterated line graph, respectively, of the graph G. If G_1 and G_2 are two regular graphs, both on n vertices, both of degree $r \geq 3$, then $\overline{L^2(G_1)}$ and $\overline{L^2(G_2)}$ have equal energies, equal to (nr-4)(2r-3)-2.

INTRODUCTION

Using the notation and terminology of the preceding paper [1], we denote by $\lambda_1, \lambda_2, \ldots, \lambda_n$ the eigenvalues of a graph G and by n its order. The energy of the graph G is then defined as $E(G) = |\lambda_1| + |\lambda_2| + \cdots + |\lambda_n|$. Two graphs G_1 and G_2 are said to be equienergetic if $E(G_1) = E(G_2)$.

Let $L^2(G)$ denote the second iterated line graph of the graph G.

In the paper [1] we proved the following:

Theorem 1. Let G_1 and G_2 be two regular graphs, both on n vertices, both of degree $r \ge 3$. Then $L^2(G_1)$ and $L^2(G_2)$ are equienergetic, and $E(L^2(G_1)) = E(L^2(G_2)) = 2nr(r-2)$.

Here we demonstrate the validity of a similar result. Let \overline{G} denote the complement of the graph G.

Theorem 2. Let G_1 and G_2 be two regular graphs, both on n vertices, both of degree $r \ge 3$. Then $\overline{L^2(G_1)}$ and $\overline{L^2(G_2)}$ are equienergetic, and $E\left(\overline{L^2(G_1)}\right) = E\left(\overline{L^2(G_2)}\right) = (nr-4)(2r-3)-2$.

PROOF OF THEOREM 2

From [1] we know that if G is a regular graph of order n and degree r, then $L^2(G)$ is a regular graph of order nr(r-1)/2 and degree 4r - 6. If $\lambda_1 = r, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of G, then the spectrum of $L^2(G)$ consists of the numbers

$$\lambda_{i} + 3r - 6 \qquad i = 1, 2, \dots, n \\ 2r - 6 \qquad n(r - 2)/2 \text{ times} \\ -2 \qquad nr(r - 2)/2 \text{ times}$$
(1)

If G is regular of order n and degree r, then its complement \overline{G} is a regular graph of order n and of degree n - r - 1. The spectrum of \overline{G} consists of the numbers (see [2] or Theorem 2.6 in [3]):

Combining (1) and (2), we obtain that the eigenvalues of the complement of $L^2(G)$ are:

$$nr(r-1)/2 - 4r + 5
-\lambda_i - 3r + 5
-2r + 5
1
nr(r-2)/2 times

(3)$$

16

The quantity nr(r-1)/2 - 4r + 5 is necessarily positive-valued, because it is equal to the degree of $\overline{L^2(G)}$. Evidently, -2r + 5 is negative-valued for $r \ge 3$. In order to determine the sign of $-\lambda_i - 3r + 5$, recall that all eigenvalues of a regular graph of degree r lie in the interval [-r, +r]. Therefore, $-\lambda_i \le r$, i. e.,

$$-\lambda_i - r \le 0 . (4)$$

Because $r \geq 3$, we have

$$6 - 2r \le 0 . \tag{5}$$

Summing (4) and (5) we obtain $-\lambda_i - 3r + 6 \leq 0$, from which it follows that the eigenvalues $-\lambda_i - 3r + 5$ are negative-valued for all i = 2, 3, ..., n.

Knowing the signs of all eigenvalues of $\overline{L^2(G)}$, from (3) we can express its energy:

$$E\left(\overline{L^2(G)}\right) = [nr(r-1)/2 - 4r + 5] + \sum_{i=2}^{n} [-(-\lambda_i - 3r + 5)] + [-(-2r+5)] \times \frac{1}{2}n(r-2) + [1] \times \frac{1}{2}nr(r-2)$$

which, bearing in mind

$$\sum_{i=1}^{n} \lambda_i = 0 \quad \text{i. e.} \quad \sum_{i=2}^{n} \lambda_i = -\lambda_1 = -r$$

yields the formula

$$E\left(\overline{L^2(G)}\right) = (nr-4)(2r-3) - 2$$
. (6)

From Eq. (6) we see that the energy of the complement of the second iterated line graph of a regular graph of order n and degree $r \ge 3$ depends only on the parameters n and r.

Theorem 2 follows.

DISCUSSION

In full analogy with the corollaries of Theorem 1 (stated in [1]), we now have:

Corollary 2.1. Let G_1 and G_2 be two regular graphs, both on n vertices, both of degree $r \geq 3$. Then for any $k \geq 2$, $\overline{L^k(G_1)}$ and $\overline{L^k(G_2)}$ are equienergetic.

Corollary 2.2. Let G_1 and G_2 be two connected and non-cospectral regular graphs, both on n vertices, both of degree $r \ge 3$. Then for any $k \ge 2$, both $\overline{L^k(G_1)}$ and $\overline{L^k(G_2)}$ are regular, connected, non-cospectral and equienergetic. Furthermore, $\overline{L^k(G_1)}$ and $\overline{L^k(G_2)}$ possess the same number of vertices, and the same number of edges.

Within Theorem 2 we obtained the expression (in terms of n and r) for the energy of the complement of the second iterated line graph of a regular graph. Analogous (yet much less simple) expressions could be calculated also for $E\left(\overline{L^k(G)}\right)$, $k \ge 3$, i. e., the energy of the complement of the k-th iterated line graph, $k \ge 2$, of a regular graph on n vertices and of degree $r \ge 3$ is also fully determined by the parameters nand r.

Acknowledgement. This work was partially supported by the Department of Science and Technology, Govt. of India, New Delhi, Grant no. DST/MS/1175/02, and by the Ministry of Sciences, Technologies and Development of Serbia, within the Project no. 1389.

References

- H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I. Gutman, Equienergetic graphs, Kragujevac J. Math. 26 (2004), preceding paper.
- [2] H. Sachs, Uber selbstkomplementäre Graphen, Publ. Math. (Debrecen) 9 (1962) 270–288.
- [3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Academic Press, New York, 1980; 2nd revised ed.: Barth, Heidelberg, 1995.