A CHARACTERIZATION OF MAXIMAL SPECTRA IN TERMS OF RELATIONS

Miloš Miličić

Abstract. In this paper V.B. Kudryavcev's maximal clases of the functions with delay (maximal spectra) are described in terms of relations.

Let P_k denote a set of all functions of an algebra of a k-valued logic.

Definition 1. A spectrum is an infinite sequence

$$\mathcal{F} = (F_0, F_1, \dots, F_d, \dots)$$

of subsets of P_k .

We shall denote a spectrum by $\mathcal{F} = (F_d)_{d=0,1,2,...}$

Definition 2. If $\mathcal{F} = (F_d)_{d=0,1,2,...}$ and $\mathcal{G} = (G_d)_{d=0,1,2,...}$ are two spectra, we say that a spectrum \mathcal{F} is a subspectrum of \mathcal{G} , denoted by $\mathcal{F} \subseteq \mathcal{G}$, if $F_d \subseteq G_d$ for every d=0,1,2,...

Definition 3. Let $\mathcal{F} = (F_d)_{d=0,1,2,...}$ be a given spectrum. We say that a spectrum $\tilde{\mathcal{F}} = (\tilde{F}_d)_{d=0,1,2,...}$ is a closure, or a \sim -closure of the spectrum \mathcal{F} if

(1) $\tilde{F}_0 = \overline{F}_0$, where $\overline{F}_0 = [F_0]$,

(2) $\tilde{F}_d = (\tilde{F}_0 \otimes (F_d \otimes \tilde{F}_0)) \cup (\cup_{i=1}^{d-1} (\tilde{F}_i \otimes \tilde{F}_{d-1}) \text{ for } d = 1, 2, \dots,$ where for $F, G \subseteq P_k$ we have

$$F\otimes G=\{f(g_1(x_{11},x_{12},\ldots,x_{1m_1}),g_2(x_{21},x_{22},\ldots,x_{2m_2}),\ldots g_n(x_{n1},x_{n2},\ldots,x_{nm_n})),$$

$$|f \in F, g_j \in G \quad (j = 1, 2, ..., n)\}.$$

Definition 4. A spectrum $\mathcal{F} = (F_d)_{d=0,1,2,...}$ is closed (or \sim -closed) if $\mathcal{F} = \tilde{\mathcal{F}}$.

Definition 5. A spectrum $\mathcal{F} = (F_d)_{d=0,1,2,...}$ is said to be complete (or \sim -complete) if

 $\bigcup_{d=0}^{\infty} \tilde{F}_d = P_k.$

Received 18.10.1993

¹⁹⁹¹ Mathematics Subject Classification: 68E99

94 M. Miličić

Definition 6. A spectrum $\mathcal{F} = (F_d)_{d=0,1,2,...}$ is said to be maximal (or \sim -maximal) if \mathcal{F} is not complete (\sim -complete) and for any \mathcal{G} properly including \mathcal{F} , \mathcal{G} is complete (\sim -complete).

Theorem 1. ([1]). A spectrum \mathcal{F} is complete is and only if it is not a subset of any maximal spectrum.

From this theorem it follows that it is useful to know maximal spectra. Let us define the types of spectra (according to [1]).

Definition 7. A spectrum $\mathcal{F} = (F_d)_{d=0,1,2,...}$ is called of type (A) if there exists a maximal set M in P_k such that $F_d = M$ for all d = 0, 1, 2, ...

Definition 8. A spectrum $\mathcal{F} = (F_d)_{d=0,1,2,...}$ is called of type (B) is there exist an m-ary polyrelation $\overline{\rho} = (\rho_0, \rho_1, \ldots, \rho_{p-1})$ on $E_k = \{0, 1, 2, \ldots, k-1\}$ with period p, such that

$$F_d = \bigcap_{i=0}^{p-1} F(\rho_i, \rho_{i \oplus d})$$

for all $d = 0, 1, 2, \ldots$, where

$$F(\rho_i, \rho_{i \oplus d}) = \{ f \in P_k | f(\rho_i) \subseteq \rho_{i \oplus d} \}$$

and \oplus denotes the addition modulo p.

Remind that for a function f and an m-ary relation ρ , an m-ary relation $f(\rho)$ is defined by

$$f(\rho) = \{ f(a_0^0, a_0^1, \dots, a_0^{n-1}), f(a_1^0, a_1^1, \dots, a_1^{n-1}), \dots, f(a_{m-1}^0, a_{m-1}^1, \dots, a_{m-1}^{n-1}) \}$$

$$|f(a_0^0, a_1^0, \dots, a_{m-1}^0), f(a_0^1, a_1^1, \dots, a_{m-1}^1), \dots, f(a_0^{n-1}, a_1^{n-1}, \dots, a_{m-1}^{n-1}) \in \rho\}.$$

Definition 9. A spectrum $\mathcal{F} = (F_d)_{d=0,1,2,...}$ is called of type (C) if there exist an m-ary relation ρ and an m-ary diagonal Δ such that

$$F_0 = F(\rho, \rho)$$

and

$$F_d = F(\rho, \Delta) \quad (d = 1, 2, 3, ...).$$

Note that for each fixed value of k there exist only a finite number of spectra of types (A) and (C), but an infinite number of those of type (B).

Theorem 2. ([1]). A maximal spectrum over E_k is either of type (A), or of type (B) defined by an m-ary polyrelation with $1 \le m \le k$ and period $p \ge 2$, or of type (C) defined by m-ary relations with $1 \le m \le k$.

We can associate a spectrum $\{=(F_d)_{d=0,1,2,...}$ to each set S of functions with delay in the following way:

$$f \in F_d \longleftrightarrow (f, d) \in S \quad (d = 0, 1, 2, \dots).$$

The converse holds, too: to each spectrum we can associate a set of functions with delay, So, the terms a spectrum and set of functions with delay are mathematically equivalent; hence we can use one term or other depending on the wanted aim.

V.B.Kudryavcev gave all maximal classes in the set $\mathcal{P}_2 = \{(f,d)|f \in P_2, d = 0,1,2,\ldots\}$. Here we shall characterize Kudtyavcev's maximal classes (maximal

spectra) in terms of relations.

I. Spectra associated to maximal classes \tilde{L} , \tilde{S} , \tilde{M} , \tilde{T}_0 , and \tilde{T}_1 are of type (A) and they are characterized by relations on E_2 which characterize maximal clases L, S, M, T_0 , and T_1 in P_2 .

1. The spectrum $\mathcal{F}_{\tilde{L}} = (F_d)_{d=0,1,2,...}$, where $F_d = L$ for every d = 0,1,2,... is characterized by the relation $\rho_L = \{(0,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,1,1)\}.$

2. The spectrum $\mathcal{F}_{\bar{S}} = (F_d)_{d=0,1,2,...}$, where $F_d = S$ for every d = 0,1,2,... is

characterized by the relation $\rho_S = \{(0,1), (1,0)\}.$

3. The spectrum $\mathcal{F}_{\bar{M}} = (F_d)_{d=0,1,2,\ldots}$, where $F_d = M$ for every $d = 0,1,2,\ldots$ is characterized by the relation $\rho_M = \{(0,0),(0,1),(1,1)\}$.

4. The spectrum $\mathcal{F}_{T_0} = (F_d)_{d=0,1,2,\ldots}$, where $F_d = T_0$ for every $d = 0,1,2,\ldots$ is

characterized by the relation $\rho_2 = \{(0)\}.$

5. The spectrum $\mathcal{F}_{\tilde{T_1}} = (F_d)_{d=0,1,2,\ldots}$, where $F_d = T_1$ for every $d = 0,1,2,\ldots$ is characterized by the relation $\rho_1 = \{(1)\}$.

II. Spectra associated to maximal classes \tilde{C} , \tilde{E}_0 , \tilde{E}_1 , and \tilde{H} are of type (C).

6. We associate the sectrum $\mathcal{F}_{\tilde{C}} = (F_d)_{d=0,1,2,...}$ to the class \tilde{C} , where $F_0 = A$ (the set of α -functions) and $F_d = B \cup \Gamma$ (the union of the sets β - and γ -functions). Since there exist the binary relation $\rho = \{(0,1)\}$ and diagonal $\Delta = \{(0,0),(1,1)\}$ such that

$$F_0 = A = F(\rho, \rho)$$

and

$$F_d = B \cup \Gamma = F(\rho, \Delta) \quad (d = 1, 2, 3, \dots).$$

it follows that the spectrum $\mathcal{F}_C = (F_d)_{d=0,1,2,...}$ is of type (C).

7. We associate the spectrum $\mathcal{F}_{\tilde{E}_0} = (F_d)_{d=0,1,2,...}$ to the class \tilde{E}_0 , where $F_0 = A \cup B$ and $F_d = \{0,1\}$ for d=1,2,3,... Since there exist the binary relation $\rho = \{(0,1),(1,1)\}$ and diagonal $\Delta = \{(0,0),(1,1)\}$ such that

$$F_0 = A \cup B = F(\rho, \rho)$$

and

$$F_d = \{0, 1\} = F(\rho, \Delta) \quad (d = 1, 2, 3, \dots).$$

it follows that the spectrum $\mathcal{F}_{\overline{E}_0}$ is of type (C).

8. We associate the spectrum $\mathcal{F}_{\tilde{E}_1} = (F_d)_{d=0,1,2,\dots}$ to the class \tilde{E}_1 , where $F_0 = A \cup \Gamma$ and $F_d = \{0,1\}$ for $d=1,2,3\dots$. The obtained spectrum is of type (C) because there exist the binary relation $\rho = \{(0,0),(0,1)\}$ and diagonal Δ such that

$$F_0 = A \cup \Gamma = F(\rho, \rho)$$

and

$$F_d = \{0, 1\} = F(\rho, \Delta) \quad (d = 1, 2, 3, ...).$$

9. We associate the spectrum $\mathcal{F}_{\tilde{H}} = (F_d)_{d=0,1,2,\dots}$ to the class \tilde{H} , where $F_0 = S$ and $F_d = Y$ (the set of even functions) for $d = 1, 2, 3 \dots$ The obtained spectrum is of type (C) because there exist the binary relation $\rho = \{(0,1), (1,0)\}$ and diagonal Δ such that

$$F_0 = S = F(\rho, \rho)$$

and

$$F_d = Y = F(\rho, \Delta) \quad (d = 1, 2, 3, ...).$$

III. Spectra associated to maximal classes \tilde{W}_r and \tilde{Z}_r $(r=0,1,2,\ldots)$ are type (B).

10. We associate the sectrum $\mathcal{F}_{\bar{W}_r} = (F_d)_{d=0,1,2,...}$ to the class \tilde{W}_r , (r=0,1,2,...) where $F_{2^r(2q)} = M$ $(q=0,1,2,...,F_{2^r(2q+1)} = \overline{M} = \{f|f \in P_2 \land \overline{f} \in M\}$ (q=0,1,2,...) and $F_d = \{0,1\}$ $(d \neq p2^r,p=0,1,2,...)$. It is easy to see that there exists the polyrelation $\overline{\rho} = (\rho_0,\rho_1,...,\rho_{2^{r+1}-1})$ such that $\rho_0 = \{(0,0),(0,1),(1,1)\}$, $\rho_{2^r} = \rho^{-1}$ and $\rho_s = \Delta$ $(s \neq 0,2^r)$, where

$$F_d = \bigcap_{i=0}^{2^{r+1}-1} F(\rho_i, \rho_{i \oplus d}) \quad (d = 0, 1, 2, \dots)$$

and \oplus denotes the addition modulo 2^{r+1} ; so it follows that the obtained spectrum is of type (B).

11. We associate the spectrum $\mathcal{F}_{\tilde{Z}_r} = (F_d)_{d=0,1,2,\dots}$ to the class \tilde{Z}_r , $(r=0,1,2,\dots)$ where $F_{2r(2q)} = A$ $(q=0,1,2,\dots,F_{2r(2q+1)} = \Delta$ (the set of δ -functions) $(q=0,1,2,\dots)$ and $F_d = \emptyset$ $(d \neq p2^r, p=0,1,2,\dots)$.

Since there exists the polyrelation $\overline{\rho} = (\rho_0, \rho_1, \dots, \rho_{2r+1-1})$ such that $\rho_0 = \{(0,1)\}, \rho_{2r} = \{(1,0)\}$ and $\rho_s = \emptyset \ (s \neq 0, 2^r)$, where

$$F_d = \bigcap_{i=0}^{2^{r+1}-1} F(\rho_i, \rho_{i \oplus d}) \quad (d = 0, 1, 2, \dots)$$

and \oplus denotes the addition modulo 2^{r+1} ; so it follows that the obtained spectrum is of type (B).

REFERENCES

- T. HIKITA, Completeness criterion for functions with delay defined a domain of three elements, Proc. Japan Acad., Ser. A 54,(1978).
- [2] T. HIKITA and A.NOZAKI, A completeness criterion for spectra, SIAM J. Comput. 6, (1977), 285-297.
- [3] KUDRYAVCEV V.B., Teorema polnoty dla odnogo klassa avtomatov bez obratnyh svyazei, Problemy kibernetiki, 8, Moskva, 1962.

Katedra za matematiku Rudarsko-geološki fakultet, 11 000 Beograd, Yugoslavia