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SOME REMARKS ON (m,n)-RINGS

Janez USan and Malisa ZiZzovié

Abstract. Among the results of the paper is the following proposition. Let
(Q, A, M) be an (m,n)-ring and let O the {1, m}—neutral operation of the
m—group (Q, A). Then for every i € {1,...,n} and for every a7}, c* 2 € Q
the following equality holds

m—2

M@, 0 ™), al ™) = O(M (™ e, ™)|
1=

1. Preliminaries

1.1. Definition: Let n > 2 and let (Q, A) be an n—groupoid. We say that
(@, A) is a Dérnte n—group [briefly: n—group] iff is an n—semigroup and
an n—quasigroup as well.

1.2. Proposition [11]: Let n > 2 and let (Q, A) be an n—groupoid. Then
the following statements are equivalent: (i) (Q, A) is an n—group; (i1) there
are mappings ~' and e respectively of the sets Q"1 and Q"2 into the set
Q such that the following laws hold in the algebra (Q,{A,™1,e}) [of the type
<n,n—1,n—-2>]

(a) A(a77%, Ale37?), 220-1) = A(z7 71, A(z271)),

(b) Ale(af™),ai 7% 2) =2

(¢) A((a1™%a)7",a77%, a) = e(a]™?); and
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A notion of an n—group was introduced by W. Dornte in [1] as a generalization of the
notion of a group. See, also [5 — 7].
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(iii) there are mappings ~! and e respectively of the sets Q™! and Q" ?
into the set () such that the following laws hold in the algebra (Q,{A,!,e})
[of the type < n,n—1,n—2 >]

(@) A(A(21),2,37") = A1, A(e3H), 22751),

(b) A(z,a7™ % e(a?™?)) = z and
() A(a,a7™% (772, 0)7") = e(a]?).

1.3. Remarks: e is an {1,n}—neutral operation of n—groupoid (Q, A) iff
algebra (@, {4, e}) of type < n,n—2 > satisfies the laws (b) and (b) from 1.2
[:[8]]. The notion of {i, j}—neutral operation (i,5 € {1,...,n},7 < j) of an
n—groupoid is defined in a similar way /:[8]/. Every n—groupoid has at most
one {i,j}—neutral operation [:[8]]. In every n—group, (n > 2), there is an
{1,n}—neutral operation (:[8]]. There are n—groups without {7, j}—neutral
operations with {4,5} # {1,n}/:[10]]. In [10], n—groups with {i,j}—neutral
operations, for {,j} # {1,n} are described. Operation ~! from 1.2 [(¢), ()]
is a generalization of the inversing operation in a group. In fact, if (Q,A)is
an n—group, n > 2, then for every a € ) and for every sequence a?_z over
Q is '

af —1 def = =
(a3% &) % B}, a,072),

2
where E is an {1,2n — 1} —neutral operation of the (2n — 1)—group (@, A);

2 €
A(e? ) Y A(A(a7),2227Y) F9]]. (For n = 2, a=! = E(a); a~! is the

inverse element of the element a with respect to the neutral element e(f) of
the group (@, 4).)

1.4. Proposition [10]: Let n > 3, let (Q,A) be an n—group and e its
{1,n}—neutral operation. Then the following statements are equivalent:
(1) (@,A) is a commutative n—group; and (i) e is an {i,j}—neutral op-
eration of the n—group (Q, A) for every {i,5} C {1,...,n},i < j.

1.5. Definition: Let (), A) be an commutative m—group and m > 2. Let
also (@, M) be an n—groupoid (n—semigroup in [2,3]) and n > 2. We say
that (@, A, M) is an (m,n)—ring iff for every i € {1,...,n} and for every
a?“l,b{” € @ the following equality holds

™

(0)  M(ay™, AGBT),af™Y) = A(M(a}",bj,a7 )], _))-

A notion of an (m, n)—ring was introduced by G. Cupona in [2] as a generalization of
the notion of a ring. See, also[3, 4].
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2. Results

9.1. Theorem: Let (Q, A, M) be an (m,n)—ring and let O the {1, m}—neutml

operation of the m— group (Q,A) [:1.2,1.3]. Then for every i€ {1,...,n}

and for every al Lt e Q the following equalzty holds

(1) M, 0D, at) = O(M(@ e, ol Dljey )
Proof. 1) Let

(2) A7} 2)=yd Al y) =2
for every a]” , %,y € Q Then the following sta,tements hold:

1° For every i € {1,...,n} and for every a1, el 2,y € Q the follow-
ing equality holds

M(ai, AN, &%), a0 ) =

ar~ 1

(a0, MG e aE D o M@ v o).

2" For every cf ™%,z € Q the following equality holds
Az, P77 ) = O(CT %).

Sketch of the proof of 1° .

ANz, " ,y)_ z & A(a: 2 2) = W

M(a’fl,A(m g2 e ) (a’_l,y, a?™h), &
A(M(ﬂigﬁl, 1 ) M( C.J" 1 1)| = ,M(ﬂ. Z, ‘L 1))

M(a U, G, 1) &

AN M (@Y @, a ), M (et ¢4, 6 Py M@y, ) =
M(ai™, 2,077

A—l(M(afl, T,a )M(a 2 Cjy g 1)' g ,M(a L y,al” =
M(a} =k, AUl ,y),a?“l) [:(2),1.5].

Sketch of the proof of 2°:
A Yz, 2 z) = O™ 2 & Az, 2 0(cP)) =2 [(2),1.2,1.3].
Finaly, by 1° and 2° we conclude that for every ¢ € {1,...,n} and for
every aj’ “lel %z € @Q the following series of equahtles holds

e T e = M Al
A_l(_M(al VT8 ):M(a‘l 3 Cjy @] l)l —11M(a i )):
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O(JTlétf(rf":l C a”—1)|”h2)
1 %™y j=1 7/

Remarks:

a) Form=n=2: (1)a-0=0-a=0.

b) O is an {i,7}—neutral operation of the m—group (Q,A) for every
{i,j}C{1,...,m}i<j [12-15]. O
2.2. Theorem: Let (Q,A, M) be an (m,n)—ring and let — the inversing
operation in m—group (Q, A). Then for every i € {1,... ,n} and for every

n—1

at et b e Q the following equality holds:
(3) M(ay™', —(77%,0),a77Y) = —(M(ai 2, ¢, ai™) iz -
Sketch of the proof.
- m—2 .
1) O(M(ay™, ejya7 )],y ) = M(ai™,0(cP=2),a771) =
M(azl._la A(bn CT_Qv _(C;]’n"zs b)), a?_l) =
. g ffb—z
AM (a7, b,a771), M (0l ¢j,a77)
[2.1,1.2);
T JJ!-_2
2) O(M(a;"l,Cj,a”_l)|j:1 )=

1

M(ay7t, 0,07 1)),

M(ai™!, ("2, b),a771))

=17

m—2

A(M(a{‘l,b,a;f*‘l),M(ai‘l,cj,a}’“‘l)ljzl s M(ay™h, (P72, b),a7Y)
EL)
e P et
3) O(M(a’l s Cjy Gy )l_;,‘-_q ):

A(M(ai_l, b, a?"l)a M(ai_l, s a?_l)

m—2 -1 =1 m—2
= , —(M(a 1 €5y @ )‘{:1’

M(ai™'b,a7 7)) f1.2)

4) (3) [:2),3)].
Remark: Form=n=2: (3)a-(-b)= —(a-b) O
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