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AN ALGORITHM FOR CONSTRUCTING GRAPHS WITH
GIVEN EIGENVALUES AND ANGLES

Dragan Stevanovié

Abstract. Let the eigenvalues of a graph and the angles between eigenspaces
and the co-ordinate axes of the corresponding real vector space be given for
a graph. Cvetkovié¢ [2] gave a method of constructing a graph which is the
supergraph of all graphs with given eigenvalues and angles. Based on this,
we describe a branch & bound algorithm for constructing all graphs with
given eigenvalues and angles.

1. Introduction

Let G be the graph on n vertices with adjacency matrix A, Let {e1,e9,...,
e,} constitute the standard orthonormal basis for R". Then A has spectral
decomposition 4 = 3 Py + po Py + ... + P P, Where iy > po > ... > i
and P; represents the orthogonal projection of R™ onto E(pi) (moreover
PP=P=PF i=1,...,m; and PiP; = 0,1 # j). The nonnegative quan-
tities a;; = cos f;;, where Bij is the angle between £ (1;) and e;, are called
angles of G. Since P; represents the orthogonal projection of B™ onto E{ i)
we have a;; = || P;e;]||. The sequence a;; (j=1,2,...,n)is the ith eigenvalue
angle sequence; a;; (i = 1,2,...,m) is the jth vertez angle sequence,

Cvetkovi¢ ([1]) gave the first algorithm for construction of trees with
given eigenvalues and angles. Then in [2] he gave a method that uses only
eigenvalues and angles to construct the graph which is a supergraph of all
graphs with given eigenvalues and angles. Such a supergraph is the quasi-
graph in general case, which is described in Section 5. If we also know
the eigenvalues and angles of the complementary graph, we can construct
the fuzzy image of a graph, which enhances the quasi-graph. In the case
of trees, that supergraph is the quasi-bridge graph, whose construction is
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much simpler than that of quasi-graph and fuzzy image. It is described in

Section 4.
Further, in [3] Cvetkovi¢ gave a lower bound on the distance between

vertices based on eigenvalues and angles of graph. In Section 3 we give 2
new lower bound, similar to this one and show that the two are independent
of each other. We also present some statistical data on random graphs.
Based on the lower bound on distance and the supergraph of all graphs
with given eigenvalues and angles, in Section 6 we give a branch & bound
algorithm to construct all graphs with given eigenvalues and angles.

2. Preliminary Lemmas

If a graph or vertex invariant can be determined provided the eigenvalues
and angles are known, then the invariant is called EA-reconstructible ([1]).
The basic property of angles is given in the next lemma.

Lemma 1. ([7]) The number of closed walks of length s starting and termi-

nating at vertex j is given by Y i—, ufafj.

Corollary 2. ([7]) The degree d; of the vertez j, and the number t; of tri-
angles containing the vertez j, are given by

m 1 m

2,2 2 3

dj = Z aipi, =3 Zaz‘jﬂi-
i=1 i=1

A partition of the vertex set of G is called admissible if no edge of G
connects vertices from different parts; and subgraphs induced by the parts
of an admissible partition are called partial graphs (thus a partial graph is a
union of components, and the components are induced by the parts of the
finest admissible partition). The spectra and angles of these partial graphs
are called the partial spectra and partial angles corresponding to the original
partition. '

Lemma 3. ([6]) Given the eigenvalues, angles and an admissible partition
of the graph G, the corresponding partial spectra and partial angles of G are
determined uniquely.

Theorem 4. ([6]) Given the eigenvalues and angles of a graph G, there is
a uniquely determined admissible partition of G such that

(i) in each partial graph all components have the same indez, and
(ii) any two partial graphs have different indices.

For further properties of angles, see the monograph [7].
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Figure 1: The tree from example.

3. Lower bounds on distance

From the spectral decomposition of A we have aﬁ) = E;"ll puiPe; - Pie;.
Since | Prej- Prey| < || Pie;||-|| Piew|| we get alf) < S |2 aij g Let d(j, k)
be the distance between vertices j and &k in G.

Lemma 5. ([3]) Ifg = min {s: Y~ |#f| as; i > 1}, then d(j, k) > g.

Lemma 6. Ifg = min {s: > |,uf+2| o ok > dj + di + 8,1 — s}, where

i=1
0s_1 is the sum of s — 1 smallest degrees of vertices other than j and k, then

d(j,k) > g.

Proof Let j = wo,wy,...,W4(;,k) = k be the shortest path between j and k.
The number of paths of the length d(j,k) + 2 between 7 and k which have
the form j = wo, ..., w;, u, Wi, ..., wy(;k) = k, where v is arbitrary neighbor
of w;, is at least dj + dg + 84(j,8)-1 — d(j,k). Hence, d(j,k) > g. |

Example. For the tree shown in Fig. 1, from Lemma 5 we have d(u,v) >
2, while from Lemma 6 it follows that d(w,v) > 3. On the other hand,
from Lemma 5 it follows that d(w,v) > 3, while Lemma 6 gives only that
d(w,v) > 1. This shows that the lower bounds given in these lemmas are
independent of each other. In order to get a better lower bound, one must
then take the greater of the values given by these lemmas. O

The average value of the lower bound (obtained from lemmas 5 and 6) in
connected random graphs having from 10 to 40 vertices and given number
of edges (n— 1, n, 2n, 3n, nlogn, ny/n i n?/4) is shown in Table 1. For each
number of edges, 100 connected random graphs were taken. From this table
it can be seen that the average value of the lower bound increases with the
number of vertices in graphs having O(n) edges, while it decreases in graphs
with at least O(nlogn) edges. The exact boundary where this average value
is constant is somewhere between O(n) and O(nlogn).




4 Dragan Stevanovic

vertices [ n—1 n 2n  3n | nlogn n./n n?/4
10 | 206 1,04 1,9 1,03] 1,11 1,02 1,07
15 | 233 2,26 132 107| 1,01 101 1,02
20 | 2,50 240 141 1,10| 1,10 1,01 1,00
95 | 267 256 146 1,12| 1,00 1,00 1,00
30 2,79 268 1,51 1,13 | 1,07 1,00 1,00
35 | 2,87 281 155 1,4| 1,06 1,00 1,00
40 | 299 290 1,58 1,06| 1,06 1,00 1,00

Table 1: Average value of lower bound on distance.

The average value of the lower bound for all pairs of vertices at given
distance in connected random graphs with 30 vertices and given number of
edges is shown in Table 2. As before, for each number of edges, 100 connected
random graphs were taken. The symbol “—” in d*® row means that in the
set of random graphs there was none with diameter > d. From this table we
can see that in all cases the ratio between the lower bound and the distance
decreases with the increase of distance. It also shows that the lower bound
is almost unusable in graphs with at least O(n+/n) edges.

4. Quasi-bridge graphs
The following theorem is proved in [2].

Theorem 7. Let uv be a bridge of a graph G. Then PZ + 4Pg_y Py is a
square.

The necessary condition for two vertices u and v to be joined by a bridge,
provided by this theorem, is called the bridge condition. The gquasi-bridge
graph Q) B(G) of the graph G is defined as the graph with the same vertices
as (¢, with two vertices adjacent if and only if they fulfil the bridge condition.
Define a quasi-bridge as an edge of QB(G). If G is a tree, then we obviously
have that G is a spanning tree of Q) B(G).

The bridge condition is not sufficient for the existence of the bridge. On
the other hand, there are trees for which the equality @ B(G) = G holds.
Such examples are the stars S, and the double stars DS, , with m # n
(see [9]).

Here we deal with the number of quasi-bridges in trees. In Table 3 we
give the statistical results obtained by determining the number of quasi-
bridges in random trees which had from 5 to 30 vertices, where for each
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distance |[n—1 n  2n  3n |nlogn nyn n?/4
T 100 1,00 1,00 1,00] 1,00 1,00 1,00
2 178 1,76 131 1,1 1,06 1,00 1,00
3 924 220 1,57 131] 1,21 1,01 —
4 961 255 198 189| 1,05 —

5 205 2,88 255 233| —
6 393 3,16 3,13 —
7 347 342 400

8 364 365 —

9 3,79 3,90

10 | 391 421

11 376 4,16

12 | 341 4,10

13 3,79 4,00

14 4,00 —

15 —

Table 2: Average value of lower bound for vertices at given distance.

number of vertices we randomly chose 100 trees. The number of vertices is
shown in the first column, while the minimum, maximum and the average
number of quasi-bridges in these trees are shown in the second, third and
fourth column, respectively.

Data from this table show that many small random trees satisfy Q B(G)=
(. On the other hand, Cvetkovié¢ [1] showed that for almost every tree G
there is a nonisomorphic cospectral mate G’ with the same angles. Hence,
both G and G’ must be spanning trees of @ B(G"), and for almost every tree
QB(G) #G.

Although it cannot be seen from Table 3 it is the case that e(QB(T)) =
0(e(T)?), where (@) is the number of edges of G. One example is shown
in Fig. 2. It is a rooted tree of depth 2 where the root has a descendants,
and each of them has exactly one descendant. All neighbors of the root are
similar, hence have the same vertex-deleted characteristic polynomial. The
same holds for all leaves. Since the bridge condition is satisfied for at least
one pair of vertices consisting of a neighbor of a root and a leaf, it is also
satisfied for all pairs of vertices consisting of an arbitrary neighbor of a root
and an arbitrary leaf. Hence the tree T* from Fig. 2 is a spanning subgraph
of @B(T'). Further examples consist of rooted trees regular in the following




6 Dragan Stevanovié

vertices | min max average vertices | min max average
5 4 6 4.66 - 18 17 31 18.66
6 3 9 6.74 19 18 30 19.70
7 6 12 6.90 20 19 31 21.00
8 it 13 8.76 21 20 34 21.52
9 8 20 9.36 22 21 35 22.74
10 9 21 10.96 23 22 38 23.94
11 10 18 11.16 24 23 37 24.70
12 11 23 12.18 25 24 46 26.54
13 12 30 13.34 26 25 49 27.42
14 13 25 14.61 27 26 44 28.70
15 14 28 15.48 28 2T 39 29.18
16 15 33 16.70 29 28 50 30.48
17 16 24 17.46 30 29 47 31.70

Table 3: Quasi-bridges in random trees.

sense: all nodes on the same level have the same number of descendants.

5. Quasi-graphs and fuzzy images
The following theorem is proved in [2].

Theorem 8. Let G be a graph with n vertices and m edges, and let uv be
an edge of G. Then there exists a polynomial q(z) of degree at most n — 3
such that

(" — (m = 1)z""2 + ¢(2))Pa(z) + Po—u(z)Pg_.(z) is a square.

The necessary condition for two vertices u and v to be adjacent, provided
by this theorem, is called the edge condition. The quasi-graph Q(G) of the
graph G is defined as the graph with the same vertices as G, with two vertices
adjacent if and only if they fulfil the edge condition. Obviously, any graph
is spanning subgraph of its quasi-graph.

If G is regular and both G and G are connected then from the eigenvalues
and angles of G we also know the eigenvalues and angles of G [6]. Now, the
edge condition in G is a necessary condition for non-adjacency in G, and any
two distinct vertices of G are adjacent either in Q(G) or in Q(G). If they are
adjacent in one and not adjacent in the other, then their status coincides
with that in Q(G). Thus, the fuzzy image FI(G) is defined as the graph with
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e(T) = 2a

Figure 2: QB(T) can have many edges.

the same vertex set as G and two kinds of edges, solid and fuzzy. Vertices u
and v of FI(G) are joined by a fuzzy edge if they are adjacent in both Q(G)
and Q(a), otherwise they are joined by a solid edge if they are adjacent in
Q(G) and they are non-adjacent if they are non-adjacent in Q(G).

Except for small values of n (up to 4), it is very difficult to use the edge
condition practically. Since the coefficients of the characteristic polynomials
are integers, we can use the following weaker corollary.

Corollary 9. Let G be a graph with n vertices, and let uv be an edge of G.
Then Pg_u(n)Pg_y(n) is quadratic residue modulo Pg(n) for every n € Z.

Using Corollary 9 involves a loss of information. Indeed, for regular graphs
we got that usually only a few pairs of vertices are not joined by a fuzzy edge
in the fuzzy image. Thus the problem of implementing the edge condition

still remains.

6. The Constructing Algorithm

The algorithm presented at the end of this section is of branch & bound
type. It does not assume anything about graph connectedness, but in the
case of non-connected graphs, we can simplify the construction. Namely,
we can find the partial eigenvalues and angles from Theorem 4. Then we
construct all partial graphs with the corresponding eigenvalues and angles,
after which we have to construct all the combinations of the partial graphs
obtained.

Before the algorithm enters the main loop, it determines the graph G~
that is the supergraph of all graphs with the given eigenvalues and angles.
Let G denote the putative graph with given eigenvalues and angles, with
vertex set V(G) and edge set E(G). In the case of trees we have G* = QB(G),
in the case of regular connected graphs with connected complements we have
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G* = FI(G), while in other cases G* = Q(G). Then for each pair (u,v) of
vertices, the algorithm determines the lower bound d;(u,v) on the distance
in G between vertices u and v, based on Lemmas 5 and 6.

At level 0 we choose the vertex v; arbitrarily, and pass to level 1, where
we enter the main loop. When we come to level ¢ (i > 1) we have already con-
structed the subgraph G; induced by vertices vy, vy, ..., v;. Then we choose
the vertex v;4; from the set of remaining vertices, select its neighbors from
the set {v1,v2,...,9;}, and pass to the next level, until G is constructed in
whole.

The fact that at each level we know the induced subgraph of G provides
us with the possibility of using the following well-known theorem.

Theorem 10. (see, for example, (8], p. 119) Let A be a Hermitian matriz
with eigenvalues Ay > Ay > ... > A, and let B be one of its principal
submatrices. If the eigenvalues of B are vy > vy > ...v,, then \; > v; >
At M = 12 g m).

The inequalities of Theorem 10 are known as Cauchy’s inequalities and the
whole theorem as the Interlacing theorem. If Cauchy’s inequalities are not
satisfied for G;, then we are not on track, i.e. .G; can not be an induced
subgraph of G' and we must return to the previous level.

Suppose that the algorithm is currently at level i. Let dC denote the
degree of v in G;. If for some vertex u of G; it is the case that

dg + [{v € V(G) = V(Gi) : (u,0) € E(GM)} = du,

then we say that u is forced af level i, because u must be adjacent in G to
all the vertices from V(G) — V(G;) to which it is adjacent in G*.

Next we have to select the vertex v;y;. Consider an arbitrary vertex
v € V(G) - V(G,), for which we introduce the following parameters. In the
case that G* = FI(G) let

I

v = Hu€V(Gi):(u,v)is a solid edge in FI(G)}|
st o= |{ueVIG)-V(C)): (u,v)is a solid edge in FI(G)}|,
[{u € V(G) : (u,v) € E(G¥), uis forced and (u, v)is fuzzy edge}|.

o
S
I

In other cases, let s; = s = 0 and

o, = |[{u € V(G:) : (u,v) € E(G*) and u is forced}|.
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Finally, let

fo
5

Of course, it follows that v must be adjacent to s; + o, vertices of G,.
Based on these parameters, we can determine the smallest number 1My, and
the largest number M, of the remaining vertices of G; that may be set as
the neighbors of v in G;41:

(1) My max {0,d, — (57 +s3) — fif - 0,},
(2) M, = min {f ,d,—s; —o,}.

v

{u € V(G:): (u,) € B(G} - 57 — oy,
{u € V(G) - V(GY) : (u,v) € B(G"}| - st

Il

Il

Vertex v may be adjacent to at most f + s vertices from V(G) - V(Gy),
and since it has degree d, in G, it follows that m, > d, — (s +s})— f+ —o,.
Since m, is non-negative, equation (1) holds. On the other hand, v must
be adjacent to s, + o, vertices from V(G;). Then the inequality M, < j i
follows from the fact that v may be adjacent to a vertex of G; only if it is
adjacent to that vertex in G*, while the inequality M, < d, — s, — o, holds
since v is adjacent to at most d, vertices of G;. If for any v it is the case
that M, < m, we have to return to previous level.

If we select the vertex v as v;;; then the number of neighborhoods of v
in the set {vq,v2,...,v;} that have to be examined at this level is equal to

_ (L[ 5 5
W= (o) G )+ (5)

i Fo\ fo —my So N\ s —my)- o (fy — M, +1)
(mu)+(mu) mu+1+"'+( U) (my+1)-...-M,

f'u_ fu__mv fu__Mfu'i'Q f;_Mu+1
I+—71+... 1 o)
(mv u my+1 e M,—1 F M,
Hence, as the vertex v;1; we choose the vertex v which minimizes the

value V, (in the algorithm we use the value log N, computed using Stir-
ling’s formula).

fl

Once the vertex vyy; is selected, we have to specify its neighbors from the
set {v1,...,v;} in order to construct the graph Git1 completely. Let us
introduce the following conditions that are applied in the algorithm:

(i) the degree condition at level i is satisfied if for every vertex v of Git1
the degree of v in Gjy1 is not greater than the degree of v in @ (see
Corollary 2).
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(ii) the triangle condition at level i is satisfied if for vertex v of Gy the
number of triangles in G;41 containing v is not greater than the number
of triangles of G containing v (see Corollary 2).

(iii) the distance-3 condition at level 1 is satisfied if for every pair (u,v) of
vertices of Giy1 for which di(u, v) > 3 holds, u and v do not have a

common neighbor in Giy1.

Denote by Fiy1 the set of forced vertices from {v,...,v;} that are neigh-
bors of v;41 in G*. In case that G* = FI(G) we also put into Fiq1 those
vertices from {vy,...,v;} that are connected by a solid edge to v;41 in FI(G).
Of course, vertices from Fjyp must be adjacent to w41 in Gija. If any
of the above conditions is not satisfied when we join viy1 to the vertices
from Fjy; then we have to return to the previous level. The neighborhood
§ C {v1,..., v} of vip1 consisting of nonforced vertices must be such that
also none of above conditions is broken. If any of the conditions is bro-
ken, we have to select the lexicographically nearest neighborhood satisfying
them. This new neighborhood can not be a superset of one that does not
satisfy them, due to the monotonicity of the conditions. If there is no such
neighborhood, we have to return to the previous level.

We return to the previous level in the backward phase of the algorithm.
Notice that when we are looking for the next neighborhood of nonforced
vertices to be examined we allow it to be the superset of the current omne.

The Constructing Algorithm
Tnput: Eigenvalues and angles of a graph.
Output: All graphs with given cigenvalues and angles.

begin
find the supergraph G*
for all pairs (u,v) find di(u, v)
choose vertex vy

f=]
1. Forward phase
while ¢ > 0
if 4 is equal to the number of vertices then
if the constructed graph has given eigenvalues and angles
then print the graph




Constructing graphs with given eigenvalues and angles 11

else
check whether any of the vertices vq,...,v; is forced at this level
for each v € V(G) — V(G;) find the smallest m, and
the largest M, possible for the degree of v in G;44
if Cauchy’s inequalities hold for G;
and m, < M, for each v € V(G) — V(G))
then
select vertex v;41
determine the set Fjyq
if F;,| does not break any condition then
find the lexicographically smallest neighborhood Sy of ;11
consisting of non-forced vertices of G; (my,,, < |5 < My,,,)
while 5,1 does not satisfy the conditions
find the next such neighborhood 541 of vy
that is not a superset of the previous one
if ;41 exists then
Giy1 + GiU{vpa} X (Fipa U Sipa)
t—1+1
goto 1.

te—1—1
2. Backward phase
while i > 1
if some vertex became forced at level ¢ 4+ 1
then it is no longer forced
find the next set S;;; of non-forced neighbors
that may be a superset of the previous one
while S;41 does not satisfy the conditions
find the next set S;y; of non-forced neighbors
that is not a superset of the previous one
if S;41 exists then
Gip1 — GiU{via} X (Fi4a U Siq1)
te—1+1
goto 1.
else
1e—1—1
goto 2.
end.

We implemented this algorithm and it may be obtained from the author.
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In [5] it is found that there are 58 pairs of cospectral graphs with the same
angles on 10 vertices. However, the graphs from some 29 pairs are the
complements of graphs from other 29 pairs. We tested the algorithm on
those pairs of graphs which edge density is less than 1/2. For testing we
used Pentium MMX machine on 200 MHz. The average of running times in
seconds for both graphs in each pair is given in Table 4. From this table we
can see that the running time depends mostly on the difference between the
number of edges in the graph and the supergraph G*.

To speed up calculations, the algorithm checks the fulfillness of Cauchy’s
inequalities after constructing the induced subgraph on [2n/3] vertices. This
checking is very time-consuming and it is the best to use it only on one
level during the construction, but not too early since it will rarely happen
that the Cauchy’s inequalities are not fulfilled when less than half of the
graph is constructed. The choice of [2n/3] vertices for these graphs gave the
improvement in running time ranging from 5% to 2000% compared to the
case when the Cauchy’s inequalities are not checked.

The distance-3 condition was of no help in this case since there are no
pairs of vertices in these graphs for which the lower bound on distance is at
least 3. However, the lower bound on distance helps to remove many edges
from the supergraph G*.

The hardest pair of graphs is no. 11, which is the only pair of regular
graphs. All pairs of their vertices are joined by fuzzy edge in the fuzzy image
and the lower bound on distance is trivial, so that the algorithm has to check
all the graphs on 10 vertices with given vertex degrees and the numbers of
triangles passing through them.
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